公务员期刊网 论文中心 生物医学工程评估范文

生物医学工程评估全文(5篇)

生物医学工程评估

第1篇:生物医学工程评估范文

从17世纪列文虎克(Leewenhock)用自己研制的光学显微镜发现微生物开始,医学的每一次重大进展都留下了工程技术的痕迹。200多年前Galvani和Volta两位科学家在电生理方面的先驱性研究,常为追溯生物医学工程的发展时提起。现代生物医学工程孕育于19世纪,其作为一门独立学科的发展历史还不过数十年时间。1985年X射线发现后,X光机很快进入医学临床,开创了医学图像学。以后航天技术、微电子技术、计算机等高技术的飞速发展,为人类研究和改善生命运动过程开辟了新的前景,工程技术与医学更加广泛深入地渗透结合,于是逐步形成了多学科与生物医学交叉融合的生物医学工程学科。生物医学工程在20世纪50年代形成学科领域,60年代崛起发展。1953年,德国在ILMENAU大学建立了第一个生物医学工程系。1964年,世界性的生物医学工程联合会(theInternationalFederalofMedicalandBiologicalengineering,IFMBE)成立,到1991年已举办九届世界生物医学工程大会。1979年,美国物理学家科马克(A.M.Cormack)和英国的电气工程师亨斯菲尔德(G.N.Hounsfield)发明了用电子计算机将X射线穿透人体形成重叠影像展开技术,无创伤地取得人体横断面图像,创造了X射线CT,因而获得诺贝尔生理学与医学奖,更成为工程技术与医学交叉融合而对医学进步产生巨大推动作用的标志。自20世纪60年代以来,美国许多著名大学都开始了生物医学工程高层次人才的培养,代表了全世界生物医学教学和研究的前沿。美国生物医学工程从基础教育到研究生培养,从理论教学到行业训练乃至职业培训,都有一套较为完善的制度,从而在生物医学工程领域长盛不衰。我国的生物医学工程学科是1978年由国家科委正式确立的,1980年成立了中国生物医学工程学会,1986年正式加入世界生物医学工程联合会IFMBE。截止2003年,我国已有48所综合或理工科大学、18所独立医科大学设立了生物医学工程专业,培养从本科到博士各层次专业人才,另有9所专科院校开设了医疗器械专科教育。

2国外医学工程学科的发展方向

在国外,医学工程专业已经深入到医学的各个领域,发挥着重要的作用。主要体现在医疗设备研发、医疗设备管理、医疗设备维护以及医疗设备的质量控制方面。

2.1医疗设备研发

各种医疗设备的研发均源于医学临床实践,国外的医学生经过4年的理工科大学学习,其医生均为生物医学工程和临床医学的双学士。因此,国外医疗设备的研发速度和思路远大于国内,许多最新的医疗设备发明均源于国外临床实践[2]。

2.2医疗设备管理

医疗设备管理主要是通过科学化管理更大效能地发挥医疗设备的作用,为医疗机构创造更大的效益。其中包括医疗设备的采购、医疗设备的监控及医疗设备的效率评价等。

2.3医疗设备维护

医疗设备使用过程当中维护、保养异常重要,因此医疗设备的维护是医学工程专业在国外医疗机构的主要职能之一。

2.4医疗设备的质量控制

医疗设备若保证其诊断治疗质量则必须进行定期的质量控制,包括计量检测、周期检验、强制检验和维修后计量修正等,确保医疗设备的性能和准确性[3]。

3国内医学工程发展情况

国内医学工程专业起始于20世纪80年代,军队主要有第一军医大学生物医学工程系(现更名为南方医科大学生物工程学院),每年全国招生40人左右,主要方向是:放射医学专业和医学影像专业,突出的成就是研制出了我国第一台X刀放射治疗系统。第四军医大学生物医学工程系每年全国招生20余人,主要方向是:电子工程与计算机智能化,突出成就是全国第一次研制人体阻抗断层成像。地方大学开设生物医学工程专业的主要有浙江大学、清华大学、四川大学、天津大学及成都电子科技大学等[4]。地方大学培养生物医学工程专业与部队有差别,军队主要是以医科大学为基础,毕业生的医学理论基础较好,但是理工科稍微欠缺;地方大学主要是理工科为基础,基础医学有所欠缺。因此,之后北京大学、四川大学开设生物医学工程专业时则结合了双方的优势,取得了很好的效果。医学工程专业的人员不深入临床是无法获得创新灵感的[5]。就生物医学工程专业人才分布流向而言,主要是去往大型国外医疗设备公司做销售、售后服务;去往国内医疗设备公司做研发、销售;去往各类医院的设备科、信息科、网络中心等。

4医学工程专业在医院的发展

医学工程专业是医院发展的主流方向,医学工程在医院虽然属于辅助科室,但对于医院的发展实属不可或缺,其主要工作是设备管理、设备维护、质量保证和设备计量。

4.1医疗设备管理

医院的医疗设备管理工作非常重要,医院的核心竞争力是医院的先进的医疗设备。如何最大限度地发挥医疗设备的作用和医疗设备的全生命周期管理是医疗设备管理的主要目标[6]。(1)设备的购置论证。以购置何种医疗设备最有利于医院的学科建设和发展为目的,每采购一种医疗设备均需进行严格的购置论证。(2)设备的购置管理。设备的购置需要调研、论证及招标等多个环节,购置管理需要采用科学化的方法优化流程、提高效率及避免商业腐败。(3)设备的档案管理。医疗设备使用和后期的管理必须进行科学化的医疗设备档案管理,目前网络化、电子化档案管理是发展的趋势[7]。(4)设备的发放储存。设备和耗材的发放和储存是物流管理的范畴之一,如何降低库存减少资金积压、提高储存的质量等需要进行科学、精心的研究[8]。(5)设备的使用监督。医疗设备能否有效使用需要监督和管理,提高设备的使用效率,加强设备的使用监督是医疗设备管理中的重要环节。(6)设备的报废回收。设备使用一定的时间需要报废,何种设备符合报废的标准、报废的设备如何处置等是医学工程人员的重要研究范畴。(7)设备的效益评估。何种医疗设备可以继续购置、何种医疗设备购置后会亏损等是对医疗设备的效益评估,同时也是医院领导对医疗设备采购决策的主要依据。(8)设备的租赁管理。有些医疗设备没有必要每个临床科室都去购买,设备租赁是提高设备的利用率的好办法。做好医院内设备的租赁管理,合理高效地调整设备是医学工程科室的重要管理范畴。4.1.1医疗设备管理目标和原则(1)医疗设备管理目标:设备检查收益是医院最大的利润增长点,应围绕新技术、新设备开展医院的新业务,设备管理的目标就是使得设备在医院收益中发挥最大的作用。(2)医疗设备管理原则:科学化管理,科学化决策,以经济效益为中心对设备进行科学化评估和决策,避免设备的闲置、浪费、重复性购置,把设备的效益发挥最大化。4.1.2医疗设备管理中存在的问题及对策(1)现阶段医院在设备管理方面存在以下主要问题:①设备采购盲目,事先的评估不足或者评估误差大;②采购的设备其发挥效能低下,无预先的盈亏控制体系,无法发挥设备的效能;③设备管理混乱,使用率、开机率不足,无法有效调动临床使用科室的积极性;④设备的监控体系缺乏,无法对具体设备的效益做出定量评估,致使再次采购缺乏依据。(2)针对以上存在的问题可以采取以下的一些对策:①医学工程科应该承担起自己的职能,配合院领导做好设备购置的科学决策;②设备管理是科学,决策的原则是效益,围绕效益做好医院的设备统筹;③设备管理包括设备的购置、监督、报废、评估,是医疗设备“全生命周期”的科学管理,是医学工程学科研究的主要方向;④因地制宜发挥医疗设备的最大效能。

4.2医疗设备维护

设备维护是延长设备使用寿命、提高设备使用率和效率的关键[9]。现在的设备维护不同于过去,设备维护主要应做好以下工作:①设备维护从过去的简单修补到设备的效益保证转变,能发挥设备的最大效益是核心;②设备维护从简单的元件维护,到整机的保障,着重强调时间和经济效益的比例;③设备维护从简单设备的维修到复杂大型设备的工作保障;④设备安全维护的出发点和立足点是医院的经济效益和社会效益;⑤医疗设备维护应该从以往的集中统一维护逐步过渡到专人保养维护,提高设备的使用率,将设备的故障隐患消灭在萌芽状态之中;⑥医疗设备维护应该从以往的等待设备随机故障发生后的紧急随机维修逐步发展到对设备预防性维护保养,充分发挥设备的效能。

4.3医疗设备质量保证

医疗设备的质量保证是发挥医疗设备作用的前提,医疗设备的精度和准确度直接关系到诊断和治疗的结果。因此,对医疗设备的质量控制是医疗设备管理的重中之重。国外的大型医疗设备有严格的治疗控制流程和管理人员。医疗设备的保证已经逐步成为医学工程学科的一个重要分支。医院的大型医疗设备必须进行定期的周期检验和质量监控。为此,医疗设备质量控制工程师应运而生,成为医疗设备发挥作用的“保护神”[10]。

4.4医疗设备计量

医疗设备计量是保证医疗设备诊断治疗准确的前提。设备计量包括:设备使用前的计量检定;设备维修后的计量检定[3]。设备的检定类型:国家强制计量检定(强检);周期性计量检定(周检)。《计量法》是医疗设备计量工作的依据。军队计量体系规定军区总医院建立三级计量站,为医院医疗设备进行计量的强检和周检。医疗设备计量是医学工程科的重要职责。

5结语

第2篇:生物医学工程评估范文

1.1研究对象的选择

我国现有127所高等学校开展生物医学工程专业本专科人才培养工作,其中96所为综合性或单科性理工类院校,31所为单科性医科院校。所有院校的专业课程体系结构中都开设了人文社科类、医学类基础类、理工类基础课程、工程类核心课程及其相关选修课程,不同院校的课程体系结构不同,在学分、学时及其实施等多方面有不同程度的偏颇。一般来说,多数综合性或理工类高校偏向于电子类、计算机类等理工方向,多数医科类高校侧重于生物材料与生物力学、影像工程、医学物理、医学仪器等领域。我们从10所国家特色专业建设点高校中选择了“单科性院校———南方医科大学”和“综合性院校———湖北科技学院”的生物医学工程专业(医学物理方向)的课程体系进行比较分析研究。

1.2研究资料的主要来源

南方医科大学的研究资料来源于该校生物医学工程学院提供的专业培养方案的电子版和该校特色专业建设点主页;湖北科技学院的研究资料主要来源于原咸宁学院教务处编印的本科人才培养方案(2010年版)、学院主页及其他查询调研。

1.3主要研究方法

基本研究方法参照笔者前期生物医学工程专业课程体系研究的思路[2],文献材料的收集研究采用系统研究法、比较法、统计法对院校专业、课程设置等多维要素进行多方面的比较分析,找出特点、规律,发现存在的问题,以求得启示。

2南方医科大学生物医学工程专业(医学物理方向)本科课程体系

2.1生物医学工程专业本科简况

南方医科大学(以下简称南医大)生物医学工程专业本科及其相关专业有医学影像工程、医学信息工程、医学仪器检测、医学物理、电子信息工程和计算机科学与技术等专业办学方向,还有“卓越工程师培养计划”。2007年成为教育部高等学校第一类特色专业建设点,并建设有部级精品课程1门、省级精品课程和研究生示范课程多门,出版了部级教材多部,多次获广东省教学成果奖。

2.2生物医学工程专业(医学物理方向)核心课程群

南医大生物医学工程专业的主干核心课程有高等数学、大学物理、模拟电子技术、数字电子技术、C语言程序设计、微机原理与接口技术、人体解剖学、生理学、医用X线机系统原理、现代医学成像技术、数字图像处理、大型医疗设备质量保证、医学电子仪器原理与设计、放射物理与防护、放射治疗学、肿瘤放射物理学、医学影像学、核医学等。

2.3生物医学院工程专业(医学物理方向)课程结构

南医大生物医学工程专业的课程体系结构分为政治理论与人文素质课程、公共基础课、学科基础课、专业课四段式课程构架模式。课程总学分/总学时为150学分/2668学时,其中理论课与实验实践的学时比例为2199∶469(1∶0.21),必修课与专选课的学分比例为102.5∶47.5(1∶0.46),学时比例为1804∶864(1∶0.48)。

2.4集中实践训练环节

南医大的集中实践训练折合为32周、1280学时。其中,模电课程设计1周、40学时;数电课程设计1周、40学时;信息技术、放射治疗计划、软件工程等课程设计各2周,均为80学时;生产实习4周、160学时;毕业设计(论文)14周、560学时;军训与劳动2周、80学时;创新课程4学分、160学时。

2.5本科毕业生基本就业方向

课程体系中的主要课程及其相应目标决定毕业生未来的就业岗位和就业方向。南医大生物医学工程专业(医学物理方向)本科毕业生就业方向主要是在医疗卫生机构从事医学物理师的工作,也可在医学科研机构、高等院校、企事业单位从事医学物理方面的研究、教学、开发和管理工作,还可攻读本学科或相关学科硕士学位。

3湖北科技学院生物医学工程专业(医学物理方向)本科课程体系

3.1生物医学工程专业本科简况

湖北科技学院(以下简称湖科院)生物医学工程专业本科及其相关专业有医学仪器、医学影像工程、医学物理、医学信息工程、听力学、眼视光学(注:医学信息工程、眼视光学、听力学方向没有正式纳入人才培养计划实施中)6个培养方向。2007年生物医学工程专业获省级品牌专业,2009年成为教育部财政部高等学校第一类特色专业建设点,并建设有3门校级精品课程,出版了医用传感器、医学影像设备、医学物理学、医疗器械营销实务等多部部级教材,多次获得湖北省教育厅、市级教学成果奖。

3.2生物医学工程专业(医学物理方向)核心课程群

湖科院生物医学工程专业的主干核心课程有高等数学、普通物理学、模拟电子技术、数字电子技术、微机原理与接口技术、数字信号处理、医学图像处理、医学成像系统、基础医学概论、放射肿瘤学、生物物理学、放射物理与防护、医学影像学、核医学、医用传感器、放疗与核医学仪器、放疗物理与放疗技术等。

3.3生物医学院工程专业课程结构

湖科院生物医学工程专业的课程体系分为通识教育课(通识教育必修课、通识教育选修课)、学科基础必修课、专业课(专业必修课、专业选修课)三段式五层次课程构架模式。课程中的总学分/总学时为158学分/2810学时,其中理论课与实验实践的学时比例为2260∶550(1∶0.24);必修课与专选课的学分比例是121∶37(1∶0.31),学时比例是2180∶630(1∶0.29)。

3.4集中实践训练环节

湖科院的集中实践训练共47周,其中专业实习26周、毕业设计(论文)10周、就业实践8周、军训3周;而劳动教育、社会实践、课程实习分散安排,放疗技术、医学仪器设备、模电、数电等课程设计教学团队分散实施,没有记入训练周。

3.5本科毕业生基本就业方向

湖科院生物医学工程专业(医学物理方向)本科毕业生就业方向主要是在二级以上医院配合放疗医师制定放射治疗方案,实施治疗方案;在其他医疗卫生保健机构从事医疗仪器、设备使用维护与维修;也可攻读本学科或相关学科硕士学位。

4生物医学工程专业(医学物理方向)本科课程体系的比较分析

4.1专业课程体系架构的比较分析

南医大生物医学工程专业(医学物理方向)本科课程结构由政治理论与人文素质课程、公共基础课程、学科基础课程、专业课程四段式课程构成。公共基础课程只开设必修课,其他每段课程均开设必修课、选修课,段内必修课与选修课交织在一起。而湖科院生物医学工程专业(医学物理方向)本科课程结构由通识教育课程、学科基础课程和专业课程三段式五层次课程结构组成。学科基础课程没开设选修课,通识教育课程、专业课程均开设必修课、选修课二层次。南医大是为数不多的没有开设医用化学课,却把C语言程序设计课程纳入核心课程的院校,未开设医用化学课程表明专业远离生物或高分子材料类的发展方向。南医大将高等数学、大学物理学列入公共基础课程可能是因为该校属于单科性医科院校,故将其列入所有专业的公共课。南医大公共基础课程没有选修课,湖科院则是学科基础课程中未设选修课。这意味着在公共基础课、学科基础课段建立大一统的具有相对稳定性的课程教育平台有利于实现大基础、宽口径、后分流的人才培养模式的选择与创新,适合于拓展专业培养方向,而南医大更能体现出平台宽口径。从医疗市场及其个性化课程来看,湖科院没有开设临床医学概论课程,而南医大开了56学时,这显示出湖科院面向市场的个性化课程存在缺陷,没有很好地研究未来就业岗位需要的人才。两所院校的共同缺点是均没有开设放射治疗剂量学课程。

4.2课程体系教学任务备配的比较分析

4.2.1专业课程总学分、总学时、理论课与实验学时比例的比较分析经过比较可以看出,湖科院的学分、学时、理论课与实验学时比例分别高出南医大8学分/142学时,比例高出1∶0.03,但差异相差无几。上海交通大学的生物医学工程专业课程总学时为1831学时,实验课学时为243,占总学时的13.3%[3]。与上海交大相比,两所院校的比例均高于上海交大,这显示了211工程大学人才培养重理论教学与实践研发、重自主学习之源。4.2.2必修课与专选课的比较分析选修课是课程结构中必要的组成部分,是对必修课的优化性的适时、适宜性补充,可弥补教学计划中课程内容的不足,调和、衔接课程内容的顺序性,也可适应市场与社会发展的需要。南医大的必修课与选修课学分、学时比例分别是1∶0.46、1∶0.48,而湖科院则是1∶0.31、1∶0.29。这表明南医大的选修课学分、学时比例高于湖科院,且选修课偏重于学科基础课程和专业课,容易造成学科、课程与教材建设方向性不明,专业建设稳定性差。笔者建议,开设选修课学时数以不超过必修课的10%为宜,有些课程还可以专题讲座的形式进行[4]。学科基础课程不开选修课最适合建立宽口径的专业培养平台,以保持课程稳定,在这方面湖科院做得较好。4.2.3学科基础课程学分、学时、理论与实践学时比例的比较分析学科基础课程学分、学时分配数据从表1和表2中可看出,湖科院的学科基础课为67学分,高于南医大的54.5学分,高出12.5学分;湖科院的学时为1161,高于南医大的950,高出211学时;南医大的理论∶实践的学时比例是808∶142(1∶0.18),而湖科院的理论∶实践的学时比例是896∶265(1∶0.30),高出1∶0.12。如果从学科基础课的学分、学时占总学分、学时的比例看,湖科院为40.7%、41.3%,南医大是36.4%、35.6%,两所院校差异相差无几,但是理论∶实践的学时比例高出1∶0.12,有非常显著性的差异,显示出湖科院在学科基础课教学中重实践教学,着重培养学生的基本技能。这种差异性反映出湖科院是综合性院校,涵盖医学、理学、工学等十大学科门类,组建了18个教学院部,给实践教学创建了良好的条件和丰富的共享资源。4.2.4医学课程学时的比较分析南医大开设的医学课程是人体解剖学、生理学、病理学、放射生物学、放射治疗学、医学影像学、核医学、临床医学概论,总学时为336学时。湖科院开设的医学课程是基础医学概论(解剖、生理、生化)、细胞生物学、放射生物学、病理解剖学、病理生理学、核医学、放射诊断学,总学时是379学时。从学时比较来看,湖科院的医学课程学时高出南医大43学时,两所院校开设的医学课程门数与学时数相差不大。两所院校的比较分析与赵娜等人报道的“医学院校开设的医学基础课程比例高于理工院校,能够为该专业的学生提供较为系统的医学类课程教育,完善学生的临床知识体系,有助于该专业教学和科研水平的提高”论点不符[5]。从邓军民等人的报道资料看,首都医科大学的生物医学工程学院开设的医学课程有6门,共472学时[6],远高于同质同类院校的南医大的260学时,也高于综合类院校的湖科院的175学时。

4.3专业课程与就业方向的比较分析

从整体上讲,主要课程的设置要面向社会、面向市场,在很大程度上决定、支撑着就业方向、就业岗位。两所院校对就业方向的总体整合表述主要是在医疗卫生机构从事放疗方案的研制与放疗技术工作,也可攻读本学科或相关学科硕士学位。南医大的就业方向偏重在医疗卫生机构从事医学物理师的工作,也可在科研机构、高等院校、企事业单位、医疗科研机构从事科研、教学、开发和管理工作。而湖科院则偏重于在二级以上医院配合放疗医师制定放射治疗方案,实施治疗方案;也可以在医疗卫生保健机构从事医疗仪器、设备的使用维护与维修。这些都是对各高校的办学特色的理性表述。

4.4集中实践教学环节的比较分析

实践教学环节是集中培养学生动手能力的主要措施。南医大的集中实践训练为32周,与湖科院的47周相比,从表面上看少了15周,但由于各校的集中实践教学环节方式、方法与途径各异,比较的实际意义不大。两所院校的集中实践教学环节虽各有长短,但都没有达到高等学校理工类人才培养的基本要求和标准。但与泰山医学院应用物理学专业(医学物理学方向)的实践教学环节为59个训练周相比,两所院校的实践教学环节训练周太少。湖科院的微机在医学仪器中的应用、放疗仪器设备的设计、放疗与核医学仪器、放射物理与防护、放疗物理技术等课程设计在操作层面上分别由医学仪器、医学物理教学团队分散安排,这也是一个值得探讨的问题。

5创新专业人才培养方案,优化课程体系目标的几点建议

通过专业课程体系的比较分析,依据生物医学工程专业人才培养的社会需要,借助生物医学工程教育专业本科国家标准建设的向导,配合专业评估与专业认证的实施为载体的课程体系,现提出以下几点建议。

5.1坚持办学理念创新,探究专业培养创新的前沿,明确专业培养目标

理念创新与目标要求可参照东北大学生物医学工程专业的培养目标,综合利用中外优秀的办学资源,发挥国内外企业、集团公司的科研、教学和市场优势,实现“产、学、研”合作与合作教育,培养适应生物医学工程学科前沿的科技领域的发展需要,精通专业基础理论、专业知识与技能,具有创新意识、创造能力的高级专业人才。

5.2深化课程体系改革,优化、纯化课程知识结构

(1)当代课程体系改革宜突破传统三段式的课程结构,建议建立新三段式九层次课程结构,每段课程均开设必修课和选修课。以西安交通大学的生物医学工程专业课程体系为例,通识教育课程分为思想政治教育、国防教育、大学英语、计算机等不断教育课程和公共基础通识教育课程;学科教育课程分为基础科学教育课程、专业主干课程、专业课程;集中实践教学分为毕业设计、课程设计、放疗技术实践、课外实践(社会实践、科技与竞技活动)。(2)必设临床医学概论、放射治疗剂量课程,且其课程教学时数不低于180学时,有利于提高放疗计划方案制定的参与性、科学性和临床放疗的合理性,提高放疗质量与效益。(3)学习清华大学,结合本校特点探索夏季小学期制,满足学生的个性化课程选修,拓展实践的时间、空间,采用多元教学及实践活动设计,全面提高人才培养质量。

5.3明确课程体系改革思想,规范课程主导原则

课程体系设置可参照浙江大学的生物医学工程专业,主要课程设置有计算机与网络技术、电子电路设计、传感器与仪器设计、信息与图像处理、生命科学类五大模块。要求在课程体系的结构、内容之间,其知识容量应该有合理的比例,淡化学科自身的重要性,打破学科界限,避免结构与知识出现较大的偏颇局面,也应避免面向市场、就业岗位的选修课冲淡学科基础或主干课程,对开设的选修课一定要突出个性化。另外,鼓励将学科前沿的新知识、新技术、新成果快速引入主要课程内容中,拓宽学生的知识视野。

5.4谋划课程体系策略,控制课程教学时数比例

根据部级特色专业建设质量工程评估体系的要求,四年制本科生物医学工程专业人才培养的实际需要,课程总学时应控制在2600~2800。课程学时分配应适度减少专业课学时,相对增加实践教学学时,适量增加选修课和学生自主学习的时间和空间,减轻学生负担。对理论与实践课学时的比例控制,原则上要求研究型高校在增加学科基础课理论学时的同时,宜将理论与实践课程的学时比例控制在1∶0.3左右,专业课控制在1∶0.4左右;而教学型高校宜适度减少学科基础课,把理论与实践课程的学时比例控制在1∶0.35左右,专业课控制在1∶0.45左右。专业课程体系中的所有课程都必须以不同程度、形式、方法开展实践教学,尤其是要注重专业课。

6结语

第3篇:生物医学工程评估范文

[关键词]生物医学工程;影像技术学;教学体系;实践教学

生物医学工程专业是一门现代医学和医学工程技术相互结合的学科,主要在理工科院校开展,作为一所以医学教育为主的高校,在生物医学工程专业培养中,注意与医学临床实践紧密结合,侧重医疗器械实践培养。该校生物工程专业前身为医学影像学(工程方向),自1999年开办至今,根据实际情况,不断修正培养培养,重视理论与实践相结合,不断提高学生的实践能力,以“工程素质高、实践能力强”的应用型专业人才培养,为培养目标。

1该校发展历程

牡丹江医学院自1958年创立以来,目前已经拥有近60年的教学历史,1997年6月,学院通过了原国家教委本科教学评价,成为全国首批本科教学评价合格院校。从最初的名不见经传到现如今的发展壮大,牡丹江医学院在学科建设、师资力量及科研投入上均下足了功夫。尤其重视实践教学环节,在教学、科研、实习和就业方面均走在了同级别院校的前列。

2生物工程及影像技术的发展背景

生物医学工程(BiomedicalEngineering,BME)是结合物理、化学、数学和计算机与工程学原理,从事生物学、医学、行为学或卫生学的研究;提出基本概念,产生从分子水平到器官水平的知识,开发创新的生物学制品、材料、加工方法、植入物、器械和信息学方法,用于疾病预防、诊断和治疗,患者康复,改善卫生状况等目的[1]。近几年来,我国的医疗体制变革正处在快速时期,理工类科学技术在医学领域,尤其是生物医学中的应用范围也越来越广,因此对于具有较高专业素养和应用能力的人才需求就更加急迫。“卓越工程师教育培养计划”(简称“卓越计划”)是国家教育部贯彻落实《国家中长期教育改革和发展规划纲要(2010-2020年)》和《国家中长期人才发展规划纲要(2010-2020年)》的重点大力项目[2],同时也是促进我国由工程教育大国迈向工程教育强国的一项重要措施,该政策旨在培养造就一大批创新能力强、适应经济社会发展需要的高质量各类型工程技术人才,为国家走新型工业化发展道路、建设创新型国家和人才强国战略服务,对促进高等教育面向社会需求培养人才,全面提高工程教育人才培养质量具有十分重要的示范和引导。医学影像技术是医学专业其中一门[3]。我国在2006年时出台了改革政策,将医学影像学专业区分为两种学制不同的专业进行教育,此教育模式早在上世纪西方某些发达国家就已经出现,并取得了较好的教育结果。4年制医学影像技术是专门从事影像技术与操作方面的工作的一类高精尖技术人才,在仪器操作及治疗剂量控制方面的能力水平要明显优于五年制的医学影像学专业学生[4]。

3该校学科建设情况

该校拥有较高规格的影像实践基地,该基地初建于2003年,现拥有6个实验区,47间实验室,建筑面积达3000㎡;配备X线机(常规X线机、程控X线机、高频X线机)、CT(螺旋CT、往复式CT)、MRI(超导MRI、小型MRI教学仪)、ECT、DSA、超声(彩超、黑白超、数字超声教学仪)、直线加速器、模拟定位机、麻醉剂、体外碎石机、血液透析机、激光相机、洗片机、高压注射器等50余台设备,总价值达1000余万元。可满足生物医学工程、医学影像技术专业的专业课的实验课、实验室开放等教学活动,可以为学生提供大量的实践动手机会。亦可带领学生参与医院大型设备的拆卸、搬运、安装、维修等工作,让学生得到“实战”的机会。该校于2013年在医学影像学院增设4年制生物医学工程专业、医学影像技术专业,培养方案与原医学影像学专业(工程方向)(5年制)不同,《医学影像设备学》作为重要的专业课之一,教学大纲亦作调整。根据医学生物工程专业、医学影像技术专业的特点,进行教学改革。理论课删减部分陈旧设备相关知识,如压缩常规X射线机结构、功能、工作原理及电路分析的讲解,由学生课余时间自行学习讨论。在实验课改革方面,删减部分陈旧实验项目,让学生多多地参与实验课教学互动中,增加学生实践动手机会,锻炼学生独立分析问题、解决问题的能力。同时针对医学生物工程专业、医学影像技术专业每学期均进行实验室开放,由老师指导学生进行DSA设备的安装,X射线机设备的局部改进设计等。积极组织指导生物医学工程专业、医学影像技术专业学生进行大学生科研立项,近几年该教研室共指导黑龙江省大学生创新创业训练计划项目、牡丹江医学院大学生科研项目共6项,例如:“常规X线机灯丝加热电路改进”。该校积极开展校企合作联合培养学生,2016年1月,医学影像学院经实地考察,与北京威格瑞技术服务有限公司等8家医疗器械公司达成合作。2016年7月,首届2013级医学生物工程专业、医学影像技术专业学生进入公司进行生产实习。2017年7月,经调查反馈,一年来各家医疗器械公司均能按学校要求培养学生,实习效果非常理想,多位学生实习表现优秀,被实习公司正式录用。校企合作模式将继续开展。医学影像学院于2013—2014年编写的高等学校改革创新教材、医学影像专业特色系列教材中,影像设备教研室针对生物医学工程专业、医学影像技术专业编写了《医学影像设备学实验指导》《医用常规检验仪器》《医用传感器》《临床设备学》4本理论及实验教材,并已投入使用。该校现已将生物医学工程专业、医学影像技术专业培养方案的修订已提上日程。

4未来学科发展模式

4.1加强实践教学环节

以教学改革为中心,以培养学生的创新实践能力为只要目的,在不断提升实践教学设施基础的同时,坚持理论教学为基础的主要宗旨[5],让学生在扎实掌握理论基础后,运用先进的实践教学来不断地提升、完善自己的综合技能[6]。使学生在此教学模式下,可以将专业发展为:拥有扎实的理论基础、培养良好的专业素养、形成独特的专业特色的优秀学科[7]。

4.2确立学生在实践教学中的主体地位

无论在学科建设中进行怎样的改革,其宗旨都是培养优秀的毕业生能被社会所用[8]。因此学生在实践教学中的主体地位就显得尤为重要[9]。因此让学生提早进入医院及工厂进行实习,不仅可以开阔学生的视野,而且可以使其在即将进入工作岗位前掌握一定的基本操作技能,在今后的工作中更早上手,从容地应对工作中的一系列问题。在教学中主动聆听学生的意见,根据学生的不同呼声对于教学方案进行及时的调整,尽最大可能地覆盖尽量多学生的特点,提高教学效果[10]。

4.3加强师资队伍建设

学校通过多种途径提高青年教师的学历及教学水平,并在教学实践中不断地提高,逐步培养一支结构合理、理论基础扎实、实践能力过硬、教学效果明显的优秀教师队伍[11]。

4.4建立教学评估及监控体系

完善的一套教学评价及质量监控系统是保证人才培养质量的一项重要措施[12]。建立一套过硬的实践教学基础、完善的实践教学过程、科学的实践教学效果评价、严格的教学质量监控体系,对于加强对整个实践教学工作的宏观调控、保障实践教学体系的落实、高素质应用型创新人才的培养都起到了十分重要的作用[13]。

[参考文献]

[1]李树祥,刘晓勤.医学影像工程专业实验课程改革的探索与实践[J].西北医学教育,2014,8(1):5-7.

[2]王能河,但汉久,张志德.生物医学工程专业(医学影像工程)本科课程体系比较研究[J].现代仪器与医疗,2013,19(2):70-74.

[3]宁旭,金贵,许佳,等.生物医学工程专业电子信息类课程实践教学体系的探索[J].现代医药卫生,2012,27(22):3512-3513.

[4]陈月明,孟雪.基于工程性和实践性的课程设置模式探索与实践—以安徽医科大学生物医学工程专业为例[J].安徽广播电视大学学报,2017(1):87-91.

[5]吴凯,吴效明.生物医学工程专业创新性人才培养的探索与实践[J].医疗卫生装备,2016,28(9):80-81.

[6]王岫鑫,庞宇,冉鹏,等.“三位一体化”创新型数字医疗人才培养模式研究—以生物医学工程专业为例[J].教育教学论坛,2016(15):134-135.

[7]钟娟,郑旋.基于创新型应用人才背景的生物医学工程专业人才培养模式的探析[J].科学与财富,2014(10):151.

[8]张岁霞,杜守洪.生物医学工程(临床工程方向)专业应用型人才培养模式研究[J].新疆医科大学学报,2017(9):147-150.

[9]王洪凯,刘惠,邱天爽.《医学图像处理》课程实践性教学研究与探索[J].教育教学论坛,2017(3):132-133.

[10]陈瑛,龚著琳,苏懿,等.以能力培养为导向的“医学图像处理与分析”研究生课程教学改革初探[J].中国高等医学教育,2010(6):79-80.

[11]李鑫,王爱英,闫洁.以培养学生创新思维能力为导向的实践课程教学改革研究初探[J].教育现代化,2016(26):357-359.

[12]王境生,袁力,袁聿德,等.国内影像医学(技术)教育现状及对策[J].实用放射学杂志,2015,21(9):987-990.

第4篇:生物医学工程评估范文

[关键词]生物医学工程;专业实践;医学仪器;医学信号;教学

0引言

随着生物医学工程学科的迅速发展,医学仪器相关的应用型和研究型人才的需求日益增加,因此高等院校生物医学工程专业基本上都开设了特色的专业实践综合训练课程来提高学生的综合素质。专业实践综合训练课程的内容主要包括医学仪器的使用、医学信号的分析和处理以及医学程序的理解和掌握。在生物医学工程专业的教学中,学生在课堂上学习了医学仪器和医学信号处理的基本理论,但缺乏对医学仪器和医学信号的动手操作和处理能力。生物医学工程专业综合实践训练是本科阶段最重要的课程之一,目前已成为塑造生物医学工程专业毕业生的关键环节[1-2]。因此,专业实践综合训练平台的建设势在必行。基于社会需求和学生的知识储备,我院生物医学工程专业开设了专业实践综合训练课程,该课程为实践环节必修课,设置在大学四年级的第一学期,共计60学时。专业实践综合训练课程的目的在于培养学生的创新意识和团队协作意识,增强学生对医学仪器、医学信号和医学程序的直观理解和操作能力,为学生构建合理的知识平台。

1生物医学工程专业的专业实践综合训练课程教学现状

在生物医学工程专业的专业实践综合训练课程的教学中,国内外大学存在一定的差异。美国大学为了突出特定研究领域的专项训练,一般将专业实践综合训练结合到一些课程的课程设计中[3]。在国内大学的教学中,通常单独设置医学仪器综合训练的相关课程。西南医科大学医学信息和工程学院采用面向应用和研究的临床仪器、探索学生动手能力和学习兴趣的形成性评价考核方式,培养学生主动参与和自主学习的能力[1]。陆军军医大学(原第三军医大学)科研部生物医学分析测试中心结合当前研究的前沿和热点,采用经验教师授课-学生实验操作模式来培养学生的动手能力和创新思维[4]。空军军医大学军事生物医学工程学系(原第四军医大学生物医学工程学院)基于产业发展对生物医学工程专业人才的需求,提出了细分教学内容、引入示教仪器和设计综合性试验的教学方式,培养适应生物医学工程专业发展趋势的人才[5]。清华大学医学院生物医学工程系紧跟学科前沿和专业发展趋势,更新教学内容、建设立体化教学资源和创新性支撑平台,主攻基础性、创新性、趣味性和研究性,并通过临床医院实习,形成了特色的专业综合训练教学体系[3]。长治医学院生物医学工程系采用研究性教学和开放性实验室模式,培养学生的科研能力和团队精神,锻炼学生的综合素质[6]。上海理工大学医疗器械与食品学院针对学生独立动手能力和工程实践能力较弱的缺点,实行实践性教学,通过加强院企合作和实践基地建设来提高学生的医疗器械操作水平[7]。根据国内外专业实践综合训练课程的教学情况,如何培养学生的动手实践能力和自主学习能力,如何使专业实践内容面向临床和社会应用,如何在实践中培养学生的科研能力和创新思维成为该课程的关键所在[8-10]。针对专业实践综合训练课程的开展现状并结合我院生物医学工程专业的特色,建立了医学仪器实验室,通过教学平台来开展专业实践综合训练课程的教学工作。

2专业实践综合训练课程教学平台的建设和实践

教学平台是专业实践综合训练课程顺利开展的基础保障。为了有效地加强本专业学生的综合性实践能力,建设了3个创新性教学平台。在基于专业实践综合训练平台的教学过程中,发现学生存在动手能力较差的问题。如何提高学生实践与理论相结合的能力,深化学生对医学仪器、医学信号和医学程序的理解和认识是专业实践综合训练教学的重中之重。

2.1医学仪器操作平台的建设和教学探索

基于医学仪器实验室的现有条件,建立了医学仪器操作平台,以便使学生能够掌握临床医学仪器的基本原理,熟练地操作和使用常见的临床医学诊断和治疗类仪器,了解医学仪器的维修和维护。医学仪器操作平台包括MRI教学成像仪JXMRI-Ⅱ、医学归档和通信系统(picturearchivingandcommunicationsystems,PACS)、心功能血流参数无损检测仪TP-CBS-Ⅱ、彩色多普勒超声诊断仪SSI-3000、心电分析系统MedEx、脑电检测分析系统NT9200、高频电刀B-15、经颅多普勒TCD-2000、全数字超声实训仪PY-2000、微波热消融仪MTC-3C等。基于医学仪器操作平台的教学主要采取专项实训和小组合作的实践方式。为了使学生系统地认识各种医学仪器,教师应适当讲授医学仪器的基本工作原理,例如,MRI的成像原理、PACS的工作流程等,由此可使学生在后续操作中有的放矢。在医学仪器的实验中,采用专项实训的方式,针对专业特色设置了8个实训项目以供学生轮流进行专项实践。研究表明,小组合作学习方式通常有助于学生获得团队管理、交流和表达方面的社会和专业技能[11]。因此,为了锻炼学生的分组合作和协作能力,提高学生的积极性和创造性,每3人组成实验小组。分组合作的医学仪器实训场景。为了培养适应社会需求的研究型人才,在完成教学实训的同时,支持学生在该平台上进行科学研究,发表相关科技论文[12]。

2.2医学信号处理平台的建设和教学探索

医学信号处理平台主要由基础医学信号数据和编程工具构成,其中基础医学信号数据包括MIT心电数据库、MRI原始K空间信号、医学断层图像(CT、MRI图像)等;编程工具包括VC++、MATLAB等。通过医学信号处理平台的实践,可以大大地提高学生的编程能力,同时使学生能够更好地理解、分析和处理医学信号,这对于培养学生综合运用所学知识实践基础教学理论,锻炼学生的综合素质具有非常重要的意义[13]。医学信号处理平台的教学主要采取专题训练、循序渐进和课程设计的方式。在医学信号处理领域中,医学信号的计算机辅助诊断仍是研究的热点[14-16]。基于社会需求,开展了心电信号自动分析诊断系统的课程设计。首先,教师适当讲授医学信号的基本特征和处理算法;为了解决学生无从下手的难题,采用专题训练的方式,层层推进,辅助学生建立VC++工程,读取和浏览心电信号,设计简单的心电信号处理算法(例如高通滤波、低通滤波等);在专题训练的基础上,进行综合课程设计,要求学生从MIT数据库中读取心电信号,提取特征参数,同时对心电信号进行分析和诊断,并要求学生撰写课程设计说明书一份,详细介绍程序流程图和具体实现过程以及课程设计中所遇到的问题。通过医学信号处理平台的训练,学生能够系统地掌握医学信号处理和分析理论,并能够较大地提高编程能力和动手能力。

2.3医学程序模拟仿真平台的建设和教学探索

在一些医学程序中,学生无法获得实际的中间过程,从而不能彻底地掌握医学程序的进展和细节。例如,热消融已成为治疗肝肿瘤的绿色疗法,但热消融过程中的肿形态和真实消融效果无法直接获悉。因此,建设了医学程序模拟仿真平台,该平台主要由临床医学图像,三维可视化软件Amira和有限元仿真软件Comsol、Ansys构成。通过医学程序模拟仿真平台,学生能够掌握模拟仿真软件的使用,并可通过仿真获得每个医学程序的具体实施状态。在医学程序模拟仿真平台上,针对目前图像处理和热消融领域的研究热点开展教学,教学内容包括肝肿瘤和血管的三维模拟和量化、热消融温度场仿真以及热消融手术的效果评估等。通过适当讲授、讲义成册和专题实训,可培养面向实际临床应用的专业工程人才。

2.4以过程评价为中心的考核方式

在教学考核中,为了调动学生主动学习和积极动手的兴趣,采用过程评价考核方式。专题训练完成后,综合学生每个教学环节的具体表现来给定成绩。在医学仪器操作平台的考核中,基于学生对医学仪器的掌握情况和实际动手能力给定成绩;在医学信号处理平台中,基于每个专题的编程情况以及课程设计的综合分析情况给定成绩;在医学程序模拟仿真平台的考核中,根据学生对每个医学程序的掌握情况以及最终仿真结果的细节给定成绩。课程考核成绩最终基于学生出勤情况(20%)、课堂表现(40%)以及实验结果和分析报告(40%)等方面来综合评定。

2.5专业实践综合训练平台的教学效果评价

经过多年的教学积累和平台完善,专业实践综合训练平台获得了良好的教学效果。学生通过专业实践综合训练平台的教学和实践,普遍认识到操作技能和创新意识的重要性,从而由被动学习逐渐变为主动学习。近3a的生物医学工程专业本科生教学成绩。从该表可以看出,随着学生学习兴趣的提高,学生平均成绩的优秀比率逐年上升。通过专业实践综合训练课程的专项实践,学生的专业素质得到显著改善。首先,学生可在该平台上进行星火基金的研究以锻炼自己解决实际问题的能力;其次在就业方面,学院的本科生越来越受到用人单位的欢迎,近年来不少学生毕业后进入三甲医院医学工程科从事医学仪器操作和医学过程仿真(心脏的三维建模等)工作,得到用人单位的高度认可;另外在继续教育方面,有些学生直接考取研究生,从事图像处理和热消融手术计划方面的研究,研究生导师普遍反映,学生能迅速地进入课题研究。总之,专业实践综合训练平台为学生奠定了良好的实践基础。

3结语

第5篇:生物医学工程评估范文

【关键词】案例教学生物医学工程工程伦理

一、案例教学法简述

案例教学法顾名思义,是基于案例分析的一种教学方法,最早起源于二十世纪初的哈佛大学[1],如今被广泛的应用在金融、法律、心理学、和建筑等工程学专业领域的教学中。通常采用的方式是教师设计或根据真实事例展示一个从不同的出发点考虑会带来争议的困境(一个案例),然后将学生置于决策者的角色,通过学生的个人思辩和开展团队讨论,引导他们得到解决方案。案例方法与其他教学方法截然不同的是,案例教学法要求教师不再一味的灌输给学生知识或者对问题的见解,教师的主要任务是引导和激励学生自己设计每个案例中问题的解决方案并为自己的方案辩护,充分调动学生的积极主动性。案例教学法的优势显而易见,因为案例源于现实事例,为抽象的概念和理论提供了应用的实体平台。学生通过整理和分析案例中提供的数据,快速检索相关理论,得出结论并提出各自的解决方案,再通过团队合作和集体讨论探索不同的解决方案并权衡每个解决方案的利弊。这整个过程强化了学生理论知识的同时,锻炼了学生调研的能力(主要指搜集和分析数据来支持自己的观点)、评估和审辨对立观点的能力、公正的从多角度考虑问题的能力、合成不同角度的信息经过权衡得到折衷解决方案的能力[2]。最终对问题解决方案的提出更是给学生带来学习的正向反馈,促进学习过程的良性循环。为了达到预期的教学效果,案例教学法的实施其实对教师提出了更高的要求,需要任课教师对每个案例做深刻的分析,在案例的选取、展示方式、引导案例分析的走向上都要做好充分的准备工作。

二、生物医学工程伦理课对于案例教学的需求

友情链接