公务员期刊网 精选范文 化工废气处理技术范文

化工废气处理技术精选(九篇)

化工废气处理技术

第1篇:化工废气处理技术范文

关键词:煤气化;废水处理;影响因素;发展趋势

煤气化废水处理技术在我国已初具规模,各企业已将煤气化废水处理技术应用到废水处理工程中来。然而煤气化项目耗水量巨大,产生的废水成分复杂,多方面因素的影响使得我国很多企业的煤气化废水处理技术都不成熟,达不到环境保护的要求,且在处理过程、处理效果等方面还存在一定问题需要改进,还会在处理过程中对环境方面带来一定的污染,尤其是废水的产生,因而研究高效的废水处理技术工艺不仅可以减少对环境的污染,提高煤气化废水水资源回收利用,节约工业用水,还可以降低工艺技术处理的运行成本,减少处理工艺过程中化学品成本。

1煤气化废水处理技术现状

1.1预处理技术现状。预处理阶段主要是对煤气化废水中高浓度酚、氨及油类物质的处理,主要应用萃取法脱酚,实现酚类物质的分离,目前应用范围较广、效果较高的萃取剂是TBP-煤油溶液,可循环使用,脱酚效果高达90%;水蒸汽法蒸氨,实现氨类物质的回收利用,目前应用较多的是单塔工艺,流程简单、操作平稳、还可实现对氨和硫化物等酸性物质的同时回收,主要用于中等浓度含氨、含酸废水的处理。我国拥有较先进的处理设备的企业在煤气化废水处理技术应用过程中不断对处理工艺进行改造,解决了原有流程中铵盐结晶、结垢问题,并将抽出质量与进料质量百分比提高到9%以上;化学氧化法,是处理高浓度煤气化废水常用的方法,采用联合工艺技术将难降解的有机物转化为易降解的中间产物,对剩余的污染物利用吸附法进行再处理,使COD与挥发酚的去除率达到97%和99%[1]。1.2生化处理技术现状。经过预处理的煤气化废水污染物主要是氨氮与COD,主要采用A2/O法,去除总氮,但抗冲击能力较差,运行管理较复杂,通过专业人员对工艺不断创新、尝试以及加入其他技术,终于研究出生物倍增技术,将氨氮和总氮的去除率达到99.3%和71.5%;SBR法,集均化、初尘、生物降解等功能于一体,运行简单,操作灵活,对氨氮的去除率达98%,氨氮浓度小于10mg/L;多级生物膜法,减少优势菌群的流失,保证难降解有机物及氨氮的去除,具有运行稳定、抗冲击能力强等特点。1.3深度处理技术现状。经过预处理及生化处理后的煤气化废水还含有一定量的难降解有机物及悬浮物。高级氧化法,臭氧氧化法在一定的反应时间、反应pH内有较高的氧化效率,采用三种的负载型催化剂,以臭氧为氧化剂的工艺技术,对苯酚和氰化物的去除率高达90%以上;吸附法,利用活性炭良好的吸附性和稳定的化学性,有效去除废水中的有机物、悬浮物等物质;混凝沉淀法,以PES为最佳混凝剂通过对PAM的投加使COD和色度的去除效率分别达到62%和66%;膜分离法,用于废水的再生处理,浸没式超滤出水使水浊度在0.55NTU,SDI、COD、及色度等的去除率都能达到一个很高的程度,而0.25%的氯化钠溶液对膜组件的清洗效率能达到97%之高[2]。

2发展趋势

煤气化废水处理的重点和难点主要是高浓度氨氮和酚的处理,目前我国应用的煤气化废水处理技术在运行成本以及处理效果上仍有待提高,很多方面的研究都处于小型试验阶段,专业人员的研究方向也是对单一技术应用进行研究,对物化处理工艺与生化处理工艺的结合方向研究很匮乏,另外水质成分的复杂度、污染物浓度的高低、以及污染物种类等因素也对煤气化废水处理程度影响甚多,使得我国煤气化废弃处理技术进步缓慢,在面临环境严重污染、废水零排放的发展趋势下,我国研究人员应团结合作,共同研发现代环境下的高效的、优化的煤气化废水处理技术[3]。

3结语

总而言之,根据目前我国煤气化处理技术现状,煤气化废水处理工艺的不成熟,煤气化废水处理的影响因素等方向进一步研究更高效的煤气化废水处理技术已成为我国专业技术研究人员迫在眉睫的任务。同时煤气化企业操作人员也需在三阶段的处理技术方面突破现有桎梏,根据具体的废水水质以及水量选择恰当的处理工艺,考虑煤气化废水处理过程的影响因素,研究更高效的运行模式,提高技术处理效果的同时减少处理工艺的运行成本,确保达到排放标准、废水回收利用。

参考文献:

[1]蒋芹,郑彭生,张显景,郭中权.煤气化废水处理技术现状及发展趋势[J].能源环境保护,2014,06(05):9-12.

[2]张蔚.煤气化废水处理技术的现状及发展[J].污染防治技术,2012,09(03):18-20.

第2篇:化工废气处理技术范文

关键词:废气治理;行业发展;控制技术;展望

Abstract: The environment problem has been a national and even global within the scope of the issues of common concern, especially because of the rapid development of the modern economy, a lot of new economic industry interests seek are built on the basis of the cost of environmental pollution. According to the industrial operation situation of some emissions more, China promulgated the volatile pollutants emission standard, this article from the waste management business development as well as the current market environment characteristics of the management and technology management situation analysis, points out some problems in the development of the industry, and puts forward the corresponding solutions. Personal recommendations.

Key words: waste gas treatment; industry development; control technology; Prospect

中图分类号:S888.74+8

一.我国废气治理行业发展的基础环境

2011年是我国“十二五”规划执行的起始年,从国家的部委到各地的政府机关,都对“十二五”的计划执行持有坚决的信心,在废气污染的治理方面,“十二五”规划中提出了要对工业生产和出现气体污染及排气工序的厂区所排出的毒气及挥发性污染气体的控制管理进行加强,像一些较为典型的石化产业在半成品的加工,成品的生产、于是以及贮存过程中产生的挥发性污染气体的排放控制等。在化学溶剂的选择方面则倾向于属性温和、低毒害、低挥发性的产品,从而使得精细化工行业的废气污染排放得到一定的控制。

在“十二五”的建设期间,通过这样长期有效的污染控制管理,我国的废气污染治理工作将会取得十分喜人的成绩,其实我国开展废气污染排放控制管理工作已经有了三十多个年头,但是由于技术和经验的不足,因此相关的废气污染治理的重点都放在了除尘、脱硝及脱硫工作上,同时由于管理标准和体制的不完善和不健全,污染性较强的废气排放控制管理没有得到有效的治理。现如今,我国提出了国家空气质量提高联防联控的设计规划,将废气排放污染的控制管理工作设立为联防联控的重点工作内容之一。以下是笔者所了解到的国家颁布的相关标准:《大气污染物综合排放标准》(GB 16297-1996)、《饮食业油烟排放标准(试行)》(GB 18483-2001)、《储油库大气污染物排放标准》(GB 20950-2007)、《炼焦炉大气污染物排放标准》(GB 16171-2012)、《汽油运输大气污染排放标准》(GB 20951-2007)、《加油站大气污染排放标准》(GB 20952-2007)等等,涉及到废气污染排放并纳入制定相关控制标准的行业有:人造板工业、橡胶制品工业、电子工业、皮革制造工业、服装干洗业、涂装工业以及铸造工业等等,由此不难看出,废气排放污染较重的单位都属于工业性质,而随着今后的时展,需要废气控制管理的行业将逐渐增多,民众环保意识的增进一方面督促了国家环境管理部门工作的执法力度,另一方面也使得相关的废气污染治理行业发展更为迅速。

二.废气治理行业相关技术的近期发展

2.1治理技术的行业核心技术的介绍

这两种核心处理技术对废气污染中的粉尘、酸碱废气和有机废气都起到了基本处理的作用,能够在初步处理的环节完成一部分的简单的净化工序,为后期的升级处理打好基础。以下是两种核心技术的详细介绍。

2.1.1回收技术应用

所谓回收技术,顾名思义,就是将排放出来的废气通过一定的方法进行回收处理。比较常用的是物理回收方法,通过温度、压强的改变或利用一些具有选择性的吸附剂和渗透膜来分离排出气体中的污染物成分包括粉尘、酸碱废气和有机废气等等,该项分离方法中,所应用到的技术类别涉及到了吸收技术、吸附技术、蒸汽平衡技术、冷凝技术以及膜分离技术等等,回收过程使用过的有机溶剂可以通过集中处理后进行分离提纯,或者直接应用与对于质量方面的要求不那么严格的生产环节。从上述内容中,我们可以知道,回收技术属于物理技术应用,科技的飞速进步决定了物理分离技术的发展,这种分离方式相对来说不存在二次污染,因此受欢迎程度较高。

2.1.2销毁技术应用

销毁技术不同于回收技术,该处理过程中所应用到的都是通过生化或化学反应来完成的,通过光、热、催化剂促进分解以及微生物化合等技术,将废气中的污染废气和化学反应产生的酸碱废气转变为水和二氧化碳等一些无毒无害的小分子化合物。销毁技术施行的过程中主要是通过催化燃烧、高温焚化、低温等离子破坏、生物氧化以及光催化氧化技术的应用而完成的,需要特别提出的就是,催化燃烧技术、吸附技术和高温焚烧技术是较为传统的化学废气控制管理技术,同时也是应用最为广泛的三类控制管理技术。而吸收技术由于其处理工序的特殊性,因此可能造成一定程度的二次污染,在安全性能的表现方面差强人意,所以现如今的有机废气控制管理的过程中已经摒弃了这种处理方法,只将其作为辅的前期或后期的废气处理工序。像一些漆雾、粉尘酸性和碱性化合物的处理属于前期处理应用,等离子体破坏所产生的二次污染的吸收则属于后期吸收技术的应用。

2.2新型废气控制管理技术性质极其优势分析

下面所介绍的废气控制管理技术是指在完成了初步的废气污染处理过程后,废气中的粉尘等大颗粒物质以被去除的状况下进行的有机废气处理方法。

2.2.1低温等离子体净化法

这种废气控制管理技术是近些年兴起的一种新型处理技术。作为物质以固体、液体、气体三种形态存在以外的第四种形态,电子、离子、中性粒子和自由基是等离子体构成的四大成:所谓低温等离子体净化法就是利用某一介质在放电的过程中所产生的等离子体以极快的速度对废气中的气体分子进行反复冲击,从而使其内部的成分被激活、电离最终被裂解发生一系列的氧化反应,经过一系列的处理动作,污染物内部的化学键被打破,让污染物从大分子性质的化合物转变成无毒无害的小分子物质,最终完成污染物的转化处理。

在废气控制管理工作的进行中,利用低温等离子技术进行废气净化具备许多优势:1.系统动力消耗较低。由于等离子物质的分子体积小,因此在等离子体反应器的内部运作过程中阻力的大小几乎可以忽略不计,使得系统的动力消耗方面预留了很大的空间;2.处理反应装置的拆装简便。该处理技术的反应发生装置是采用模块化结构,除了整体造价低廉以外,还可以进行反复迁移拆装利用;3.装置开启关闭的实效性高。该处理反应方面没有温度上的要求,因此不需要任何预热工序,需要进行处理时不需要预留加热时间,可即时开启或关闭装置;4.抗干扰能力强。由于处理反应的环境密闭性较强,所以处理过程中不会受到其他颗粒物产生的干扰;5.反应装置的空间占用较少,能够节省处理空间。

2.2.2生物治理技术法

生物治理的技术方法是这几种新型治理方法中应用效果最佳的一种,工业废气中许多无机蒸汽中多少都会含有一定酸碱性化合物,而通过生物滤池的处理,能够对这些酸碱气体进行稀释处理,再通过其他废气处理手段对废气进行更深层的处理。

生物治理技法的优势在于,处理装置简单,无论是设备的投资还是处理工序的运作方面,其整体费用支出方面的资金消耗较少,并且生物治理技术法处理过程中的二次污染情况也较为乐观,绿色环保是其最大的优点。我国在生物科技方面的发展已经得到了一定的认可,并且对于生物菌落和填料的研究发展正在逐步展开。

废气治理行业市场的自身特点

3.1“十二五”对我国废气控制管理市场发展的推进

五年计划的实行和发展是我国民众实现政治权利的主要体现,“十二五”期间,国家的环保规划相继出台,引发了社会及民众对于环保事业的关注,而废气治理行业治理市场的发展也不负众望,呈现出积极向上的良好状态。但是在这种发展状况下,国家相关的管理部门和污染企业自身还是存在许多不足之处,因为刚刚进入“十二五”的规划阶段,因此一些地方政府部门对环保政策的出台还颁布还处于研究阶段,极少数的政府部门出台了相关的限制条款和处罚文件。污染企业方面则表现为对废气控制管理知识和思想的缺乏,在相关的控制管理技术方面缺乏明确的鉴别能力,主动要求进行废气控制管理的企业很少,并且受到了营业效益的限制,资金费用的利用空间方面较为匮乏。

3.2国家已设置重污染工业园区的治理试验点

任何一项与国家控制管理政策相关的颁布和实施,都会采取试验点规划的形式来进行试验,笔者所知的试验场地就有浙江台州的黄岩、椒江和林海川南园区,这些试验场中的治理技术应用项目包括蓄热式催化燃烧、蓄热式热力燃烧、低温等离子体净化、生物滴滤、光电催化等,整体试验区的废气控制管理已经全面展开。除此以外,在主城区和数十家医药化工企业设置了6个环境监测点,对当地的废气治理行业起到了很好的促进作用,加速了各地政府的废气污染治理工作进程,提高相关部门的工作热情。截止到2013年3月,浙江台州试验区的废气污染治理工作已经取得了良好的进展。

3.3国内外废气治理行业的竞争概况

相对于欧美国家和一些较为发达的东方国家,我国废气污染治理行业起步较迟。早在20世纪80年代初期,我国的制造业正值大兴发展的时期,制衣制鞋业所排出的工业废气污染十分严重,对民众的身体健康产生了极大的威胁,就此引起了广大群体的注意。当我国的制造业到达顶峰,也就是20世纪90年代时,我国出台了一系列关于大气污染物综合排放标准,并对一些较为典型的制造区域和工厂进行环境改造。由于地理环境和商业发展便利等原因,我国的制造业区域逐渐向沿海地区转移,同时制药原料加工、皮革、印刷、家具以及电子等一些重污染制造行业也涌入了我国的沿海地区,相较于80年代初期发展起来的制造业而言,这些新兴产业的废气污染程度更为严重,并且与其相关的污染控制管理的基础费用也较为昂贵。纵观我国整体的废气污染治理行业的发展历史,与发达国家相比较,治理的技术和发展至少落后了二十多年。

而在技术的引进方面,因为我国的物价水平偏低,因此制造行业的利润收入并不多,而要想引进发达国家的废气污染处理技术并加以运用,那么在成本和运作方面的费用将会是一笔很大的开支,所以我国绝大部分的民营或国营企业都不会直接引进国外的废气污染治理技术和设备。除了费用成本过高以外,我国的废气控制管理的法律法规体系制度也不够健全,各地政府的管理监督没有到位,要求标准的控制方面也算不上严格。因此,我国废气污染控制管理行业的发展下步计划应该是对国外的先进处理技术进行引进,然后与国内的处理技术进行适当地融合调整,进而形成一套适中的废气治理方法。

单纯的就治理技术方面来说,我国近二十年的研究发展过程中,在一些主流的废气治理技巧上,如催化燃烧技术和活性炭纤维吸附回收技术方面的研究已经取得了较大的进步,很大程度上已经可与国外的技术水平相媲美,并且在治理成本的控制方面还略胜一筹。而一些高端电子生产业的废气污染处理方面,我国还不具备独立处理的能力和技能,因此一些相关的国外企业凭借自身略微领先的治理技术和管理理念,运用各种商业竞争方法打入我国废气治理行业的内部市场当中,这样的竞争情况,一方面对我国废气治理行业的发展带来了一定的压力,另一方面也起到了积极正面的敦促推进作用。

归纳总结

综上所述,我国废气治理行业的发展前途还是十分乐观的,近二三十年的奋发努力,我国已经从一个毫无环境治理概念的工业落后国转变成了一个能够依靠自己的智慧和力量进行污染治理的经济强国。本文将我国废气污染治理行业的近况介绍作为开场,顺次讲述了我国废气污染治理相关标准的颁布执行、治理技术的应用优势、各项新型治理技术的研究发展、治理试验区的设立及效果以及国内外废气治理行业的竞争状况等等,字里行间中透露出了笔者对于我国废气治理行业当前所有成就的自豪以及对未来展望的祝福和期待,相信在不久的将来,我国的废气治理技术一定会攀上世界环境治理行业的顶峰,为国家的进步发展贡献出自己的一份力量。

【参考文献】

[1]宋华,王保伟,许根慧. 低温等离子体处理挥发性有机物的研究进展[J]. 化学工业与工程. 2007(04)

[2]王勇,金一中,赵青宁. 乳状液膜吸收有机废气的实验研究[J]. 环境科学研究. 2008(03)

第3篇:化工废气处理技术范文

[关键词]挥发性有机废气;治理技术;环境保护

中图分类号:X701 文献标识码:A 文章编号:1009-914X(2017)13-0159-01

随着社会科学进步的不断发展,环境保护的重要性不言而喻。工业生产等多领域中,为实现可持续发展、构建环境友好型社会,挥发性有机废气的治理是一个值得研究的课题。挥发性有机废气,也称VOCs,主要包括烃类、氨、硫化物等易挥发的有机化合物,其室温下饱和蒸气压超过133.3 Pa,沸点在50℃到260℃之间。不仅气体本身作为一次污染物会危害人体健康,并且可以和N02反应进一步在紫外线的参与下形成光化学烟雾生成二次污染。光化学烟雾,是一种有害的淡蓝色烟雾,它可以引起大气污染、影响建筑材料、导致农作物减产,并且和人体多系统疾病有关。因此,]发性有机废气的处理刻不容缓,我国也已经出台了相关法规政策治理挥发性有机废气的排放。本文通过阅读大量文献资料、分析实践实例,对治理挥发性有机废气的处理技术的现状和发展前景加以介绍和分析。

一、挥发性有机废气治理技术

吸附法是常用的治理技术之一,将流体中的某组分吸附浓缩在多孔性固体表面,从而分离该组份。通过技术的不断完善,已基本实现自动化控制,净化效率满足常用要求,就是对于高浓度的气体的吸附效果不佳。这里要强调因地制宜的选择合适的吸附剂。良好的吸附剂,如活性炭等,密孔面积大,成分稳定,耐性佳。具体而言,颗粒状活性炭结构不如活性炭纤维效率快。近来研究发现,氧化后活性炭有效传质系数更大,性能更佳。

催化燃烧处理技术也是净化废气的好方法,催化剂使得废气中未燃净的成分在较低温度下充分氧化分解。该技术对废气中的可燃组分效果好,反应安全,温度要求较低,辅助燃料消耗少。但是尘雾会影响催化剂寿命,因此应用环境要求严格。技术的使用步骤复杂,需要对废气进行净化前处理。具体流程是:气体在预热室加热升温,燃烧净化后气可以通过热交换回收部分热量。或者对有机物含量较高的废气,进行热平衡反应。值得一提的是,对于低浓度低温度的废气,可以先吸附浓缩后再催化燃烧。整个反应过程中,在热量回收率高时,热平衡要综合考虑废气不同成分和不同浓度放出的不等的热量,不同催化剂导致的起燃温度的高低不同。从而实现无需添加额外热源的经济环保的废气净化技术。目前在化工、环境工程等多行业中用于净化挥发性有机废气和处理汽车尾气。提高催化剂性能是进一步深化应用的必由之路。

另一种处理方法:液体吸收法在消除废气的同时,还可以再回收利用部分物质,该技术的废气去除率较高。液体吸收法通过区分吸收剂液体中废气的溶解度等差异,净化废气。选择与有机物相似相溶的溶剂如柴油等,对废气进行吸收,再对溶剂进行解吸处理回收部分物质。技术工艺流程简单、投资费用低,但对塔式吸收设备要求较高。液体吸收技术在大流量高浓度的废气处理有着比较广泛的应用,其缺点是易受腐蚀,并且存在二次污染。该技术的进一步研究方向是探索无毒无害、解吸率高、可以反复使用的新材料。

另一项新兴的技术,是生物处理技术。该技术近年来发展很快。微生物具有适应污染、吸收再生、投资费用低的优点。微生物将挥发性有机废气作为代谢底物,降解处理效果好,并且生物处理技术的投资、运行费用相对较低,并且没有二次污染。技术基本流程是将生物膜覆盖在过滤器中,在膜中生物相和废气发生生物化学反应,有机降解废气。微生物的生存需要控制适宜的PH,同时对有机溶液也有一定的选择性。生物处理技术对难处理的恶臭物质、有毒有害物质、挥发性有机物降解效率佳,对含氯较多的分子效果较差,适合于处理气体流量大的气体。进一步研究方向是对特定污染的特定微生物的培养,对填料、生物膜的适应性优化以及建立相关数字模型以系统计算废气处理相关流程设计。

值得一提的是,光催化氧化法。光催化氧化具有选择性,其用料可以循环使用,反应条件要求低,经济成本低。活性炭纤维作为载体的负载型的纳米Ti02光催化剂是一种非常便利的新产品,产品的比表面积大,稳定性高,抗光腐蚀性强,有较强的吸附作用,光催化综合性能好,不需更换再生,不会造成二次污染,发生反应速度快,具有抗菌效果。该技术还处于实验室阶段目前仍存在一些问题,发展方向上可以使用贵金属沉积、复合材料等多种制备方式对材料进行进一步效率优化,采用气相沉积法等多种手段,对实验条件进一步优化,将微波场等先进技术和光催化相耦合,从而进一步提高光催化效率。实验表明,一些纳米技术的应用大大推动了这一技术的进步,如纳米级粉体材料氧化还原性能极强,总之,该技术具有极大的经济潜力。

低温等离子体技术处理是利用等离子体物理化学反应的原理,借由高能粒子处理废气。常用的有电子束照射法等。低温等离子技术的能耗低,使用便利,不产生副产物、放射物,适于处理有气味气体。其发展方向是:进一步减少水蒸气含量的影响,提高处理反应效率,降低初始设备投资成本,提高经济效益。

二、挥发性有机废气集成治理技术

集成治理技术是指除了上述挥发性有机废气处理技术的单独使用外,将上述生物处理法、光催化氧化法、液体吸收法、吸附法、催化燃烧法、低温等离子处理法等针对实际情况进行综合运用。目前广泛应用的例子有:将吸附法和液体吸附方法联合运用,回收高浓度苯乙烯废气;利用等离子体与催化反应的协同效应对废气进行处理等等。实践证明,集成治理技术处理提高了处理效率、降低能耗,其效果良好,发展前景广阔。

三、总结和展望

在挥发性有机废气治理技术中,上述技术各有千秋。总体而言,治理技术的发展总体方向是:在实践中不断完善技术,提高设备容量,简化操作步骤,研发高效无毒的新兴材料和新技术,避免形成二次污染,提高经济效益,提高处理材料的重复使用率,扩大应用领域,降低反应条件要求。这就要求我们坚持走自主创新的道路。本文查阅相关文献和实例分析,对生物处理法、光催化氧化法、液体吸收法、吸附法、催化燃烧法、低温等离子处理法等挥发性有机废气治理技术进行了简要的介绍,立足上述技术的发展现状提出了可行性发展建议,展望了发展前景。总之,整体学术水平的提升有助于技术的进一步发展,有助于环境友好型社会的建设,有助于提高我国综合国力,对于可持续发展有着积极的现实意义。

参考文献

[1] 杨豪, 李彦旭与卢姿, 生物法处理挥发性有机废气(VOCs)的研究. 广东化工,2009(08): 第125-127+124页.

[2] 张娇, 挥发性有机废气生物滤池净化实验装置的研制. 实验室科学, 2017(01): 第188-190页.

第4篇:化工废气处理技术范文

关键词:制药工业 废水 厌氧处理

制药工业属于精细化工,其特点是原料药生产品种多,生产工序多,使用原材料数种或十余种,有的甚至多达30~40余种,原料总耗有的达10公斤产品以上,高的超过200公斤公斤产品,从而产生的“三废”量大,排放物成分复杂,污染危害严重。2008年8月1日起,实施新的《制药行业水污染物排放标准》,提出了更加严格的排放要求。制药工业废水通常具有成分复杂,有机污物种类多、浓度高、含盐量高和NH3-N浓度高、色度深且具有一定生物抑制性等特征,相对于其他有机废水来说,处理难度更大。

我国制药废水处理技术研究和应用始于20世纪70年代,最先采用的是活性污泥为代表的好氧工艺。到了21世纪后,针对传统工艺的不足,人们开始采用各种新型的工艺,进得更完善的处理[1]。制药废水有机物含量高、成分复杂多变而且多含杂环类、难降解物质多。在制药过程中会产生一些生物毒性的中间物质,在提取或清洗过程中会进入到制药废水中,造成应用传统生化法治理制药废水效果较差。在抗生素生产的提取和冷却工段,化学合成制药反应及提纯阶段使用了大量的无机盐类物质,使排放的生产废水中盐类浓度较高,对废水处理的生物活性产生抑制作用,影响废水生化处理效果[2]。

1 制药废水处理技术及工艺介绍

目前制药废水采用的处理技术主要包括化学法、物理化学法、好氧生物法、厌氧生物法等多种方法[3]。现在,由于制药废水难于处理,出水水质要求较高,以及处理成本的限制,制药废水处理所采用的工艺一般为多种方法联用,通过多种技术联合,使得出水水质达标[4]。药厂废水的水质特点使得多数制药废水单独采用生化法处理根本无法达标,所以在生化处理前必须进行必要的预处理,以减少废水中的生物抑制性物质,并提高废水的可降解性,从而利于废水的后续生化处理。预处理后的废水,可根据其水质特征,综合考虑废水的性质、工艺的处理效果、基建投资及运行维护等因素,做到技术可行,经济合理。从目前来说,总的工艺路线为预处理―厌氧―好氧―后处理组合工艺。

2 QIC有机废水处理技术

厌氧处理是有机废水处理技术的最有效、最经济的方法,由于其巨大的处理能力和广阔的应用前景,一直是废水处理技术研究的热点[5]。从传统的厌氧接触工艺发展到现今广泛流行的UASB工艺,废水厌氧处理技术已日趋成熟。要提高厌氧处理速率和效率,除了要提供给微生物一个良好的生长环境外,保持反应器内高的污泥浓度和良好的传质效果是2个关键性举措。以厌氧接触工艺为代表的第1代厌氧反应器,污泥停留时间(SRT)和水力停留时间(HRT)大体相同,反应器内污泥浓度较低,处理效果差。为了达到较好的处理效果,废水在反应器内通常要停留几天到几十天之久[6]。以UASB工艺为代表的第2代厌氧反应器,依靠颗粒污泥的形成和三相分离器的作用,使污泥在反应器中滞留,实现了SRT>HRT,从而提高了反应器内污泥浓度,但是反应器的传质过程并不理想。要改善传质效果,最有效的方法就是提高表面水力负荷和表面产气负荷。然而高负荷产生的剧烈搅动又会使反应器内污泥处于完全膨胀状态,使原本SRT>HRT向SRT=HRT方向转变,污泥过量流失,处理效果变差。

IC厌氧技术就是在这一背景下产生的高效处理技术,它是20世纪80年代中期由荷兰PAQUES公司研发成功。由于是一项重大发明创造,技术拥有者做了严格的保密,直到1994年,才有相关的研究报道。目前,IC反应器已成功应用于污水的厌氧处理。与以UASB为代表的第二代高效厌氧反应器相比,IC反应器在容积负荷、能耗、工程造价、占地面积等诸多方面,代表着厌氧生物反应器的先进水平[7]。虽然IC反应器具有其他反应器无可比拟的优点,但在工程实践中亦暴露出诸多技术问题:①IC反应器内部结构比普通厌氧反应器复杂,设计施工要求高。反应器高径比大,不仅增加了进水泵的动力消耗,而且因水流上升速度快,使出水中细微颗粒物比UASB多,加重了后续处理的负担。内循环中泥水混合液的上升易产生堵塞现象,使内循环瘫痪,处理效果变差。②IC反应器较短的水力停留时间影响不溶性有机物的去除效果。③在厌氧反应中,有机负荷、产气量和处理程度三者之间存在着密切的联系和平衡关系。较高的有机负荷可获得较大的产气量,但处理深度降低。④缺乏在IC反应器水力条件下培养活性和沉降性能良好的颗粒污泥关键技术。

QIC有机废水处理技术是在对IC厌氧处理技术内部规律进行深入探讨的基础上,针对其在工程实践中暴露出的技术问题进行了大量的研究、实践,以高效、低成本运行和出水水质稳定达标为目标,通过中试试验和工程实践为检测手段,对IC厌氧处理技术、工艺、装置进行不断改进,经过多年来的反复试验、验证,最终凝炼出的QIC有机废水处理新技术。以QIC厌氧反应装置为主导产品的高效、低成本环保设备获5项授权国家专利,QIC有机废水处理技术已於2010年12月通过安徽省科学技术成果鉴定。

3 沈阳红药安徽制药有限公司废水处理工程

3.1 工程概况。

沈阳红药安徽制药有限公司是由通过国家 GMP认证的亳州市国一堂中药饮片有限公司、国家GSP认证的亳州市国一堂医药有限公司、沈阳红药安徽制药有限责任公司组成,公司集中药饮片生产、医药公司销售、中药提取、中成药生产、大型物流、GAP中药材种植为一体,以药为主的综合性现代化企业。公司注册资金1000万元,并严格按照GMP、GSP进行生产和经营,具有良好的经济效益和社会效益,同时成为中药饮片生产的骨干行业。

沈阳红药安徽制药有限公司废水为高浓度有机废水。为确保废水处理达标排放,采采用QIC―CASS工艺。首先,废水经过酸化处理后进入QIC厌氧反应装置,充分降解废水中有机物,使废水的CODCr、BOD5大幅降低,同时产生大量沼气。经厌氧处理后的出水,进入沉淀池,进行固液分离,降低后序处理单元负荷。废水最终经过CASS好氧反应处理,进一步降低废水中COD、BOD、SS的含量,使出水水质稳定达到排放标准。

3.2 工艺流程和关键技术设备。

关键设备为QIC厌氧反应装置,具有容积负荷率高,节省基建投资和占地面积小,运行成本低,抗冲击负荷能力强,出水水质稳定,操作简便等诸多优点。

QIC厌氧反应装置是该工程的关键设施,主要由混合区、第一厌氧区(颗粒污泥膨化区)、第二厌氧区(深处理区)、沉淀区和气液分离区五部分组成。污水从反应器下部布水器进入污泥床,并与污泥床内污泥混合。有机废水在进入反应器底部时,与气液分离器回流水混合,混合水在通过反应器下部的颗粒污泥层时,将废水中大部分的有机物分解,产生大量的沼气。同时,通过下部三相分离器的废水由于沼气的提升作用被提升到上部的气水分离装置,将沼气和废水分离,沼气通过管道排出,分离后的废水再回流到罐的底部,与进水混合;经过下部气液分离器的废水继续进入第二厌氧区(深处理区),进一步降解废水中的有机物。最后废水通过反应器上部三相分离器进入分离区将颗粒污泥、水、沼气进行分离,污泥则回流到反应器内以保持生物量,沼气由上部管道排出,处理后的水经溢流系统排出。

该装置在大幅削减COD浓度的同时,产生大量沼气。在处理工程中极大的减轻了后续处理单元的负荷,不仅为CASS反应提供了良好的运行条件,而且为出水水质稳定达标提供了保障。同时沼气的回收利用,还可以为厂家节约大量能源,减轻由于大量使用燃煤带来的大气污染。

3.3 处理效果显著。

废水处理成本低,运行费用为0.65元/t废水。废水经厌氧反应将可产生360m3/d沼气。如将沼气应用到生活或生产,每立方沼气相当于1公斤标准煤,每吨标准煤按900元计,全年将可为企业节约能源费用118260元。废水经处理后,按每天200t回用,每吨水按2元计,全年可为企业节省费用146000元。扣除废水处理运行费用71175元,每年将可为企业增收193085元。

4 结语

在IC厌氧技术基础上自主研发的有机废水处理技术是新一代废水处理技术的安全性和处理效率远高于IC。通过引入生活污水和活性颗粒污泥高效驯化技术,对难生物降解的废水进行水解酸化,成功实现了极难处理的医药有机废水的高效、低成本处理,拓展了厌氧生物处理法的应用领域。处理后,废水的氨氮及悬浮物等污染指标均得到大幅削减,出水水质稳定,同时还能回收清洁能源――沼气,起到节能环保作用,为应用企业创造了可观的经济效益及环境效益,受到用户和社会好评。

有机废水处理技术在企业废水处理工程中实际应用的成功经验为类似的有机废水处理提供了技术支撑,对加快环保事业的稳定发展,促进节能减排起到了很好的示范效应,具有显著的环境效益、经济效益和社会效益。

参考文献:

[1] 赵艳锋,王树岩. 高浓度制药废水处理实例[ J].水处理技术,2008, 34 (3) : 84 87.

[2] 缪应祺.水污染控制工程[M].南京: 东南大学出版社,2002: 86 -112.

[3] 刘振刚. 预处理-厌氧-好氧-气浮过滤处理制药废水[J]. 中国给水排水, 2004, 20 (1) : 81 - 2.[4] 陈小平,米志奎. 制药废水的物化处理技术与进展,2009,13(10):1279-1281.

[5] 杨向阳,李布青.QIC有机废水处理技术研究与应用. [J].农业工程技术(新能源产业),2011,12:15-19.

[6] 胡晓东. 制药废水处理技术及工程实例[M ]. 北京:化学工业出版社, 2008.

第5篇:化工废气处理技术范文

关键词:食品废水;处理技术;研究进展

食品工业涉及的范围较广,其产生废水的来源也较多,主要有肉类加工废水、啤酒废水、谷类加工废水以及味精生产废水等。不同的产品其废水量的大小不一,而且随着其生产工艺的不同也会产生水量的变化。不同季节的生产也会对废水的污染物浓度和种类产生变化[1]。总体来说食品工业废水水质特点是有机物浓度和悬浮物含量高,而且易腐败,毒性较小,此外废水中还具有大量的有害微生物,对其不进行科学有效的处理,食品废水会引起富营养化,消耗水中大量的溶解氧,导致水生生物的死亡。而废水中的悬浮物沉入水底,产生具有臭味的气体,污染水环境。若引用未经处理的食品废水进行农田的灌溉,将会危害农作物。此外,废水中的有害微生物以及病虫卵会导致疾病的传播,对生态环境和人类健康造成严重的损害。因此,处理好食品工业废水对于保护我国生态环境和人类健康以及促进我国经济的持续高效发展有着非常重要的意义。

1食品废水处理技术

按照废水处理原理食品工业废水处理技术分为:物理处理法、化学处理法和生物处理法[2]。其中每一种方法都包括多种工艺,不同的技术对污染物的去除效果不同,在具体的实际处理中通常需要根据污水的实际情况采取多种技术的互相组合进行污水的处理,以下是目前在食品工业废水处理中常用的几种工艺。

1.1物理、化学处理技术

1.1.1混凝沉淀混凝沉淀是污水处理中较为常用的一种技术,其操作简单、价格便宜,处理效果好。其去除原理是加入混凝剂后,利用其吸附电中和、吸附架桥以及卷扫网捕等作用,将废水中的小分子蛋白质发生凝聚,进而达到分离的目的。通常混凝沉淀可以去除污水中80%~90%悬浮物和65%~95%胶体。目前常用的混凝剂有有无机混凝剂、无机高分子混凝剂和有机类化合物混凝剂等。无机盐类混凝剂产生的絮体小,而且不稳定,容易破碎,处理的效果不是很理想;而高分子聚合物絮凝剂在相同或较小的投加量下可以产生更高强度的絮凝,此外随着絮凝剂的研究发展,新型的絮凝剂不断出现,也不断的应用到污水处理中。有研究者分析研究了不同絮凝剂对大豆废水的处理效果,实验结果表明:在处理大豆废水时投加0.3g/L的PAC混凝剂,10mg/L的PAM助凝剂时效果最佳,而且能够去除废水中20%的CODCr、20%的总氮和60%的总磷。混凝沉淀法对大豆废水有着较好的处理效果,但其使用的药剂费较高,而且排泥量较大,也增加了污泥处置的费用,所以,大豆废水不易采取简单的混凝沉淀工艺,应结合其他工艺以达到更好的处理效果。1.1.2气浮气浮法又称为浮选法,是一种常用的废水处理技术,能够高效、快速的实现固液分离。气浮法的工作原理是利用气浮机等设备使水中产生大量的、而且高度分散的微细气泡,以气泡作为载体将废水中的悬浮物粘连,然后形成粘合体浮到水面,最后通过设备将水面上的浮渣清除,进而去除污水中的杂质。气浮法实现水中的固体和液体、固体与固体、液体与液体甚至溶质中离子的分离。其具备以下特点:①气浮法对混凝沉淀未能去除的污染物质具有较高的去除率,对悬浮物的处理效果良好,是对沉淀作用的进一步补充;②气浮过程增加了水中的溶解氧,对污水具有预曝气、脱色等作用,而且气浮渣中具有一定的含氧量,浮渣不宜腐败变质;③气浮法使污染物质浮在液体表面,有利于排渣,浮渣的含水率较低,可降低污泥的体积,进而降低污泥处置费用;④气浮法所需构筑物占地面积小,一般是沉淀池的1/8~1/2;⑤气浮法需要在废水中产生大量气泡,因此其耗电量较高,运行成本较高;⑥气浮法中的释放器在工作时容易发生堵塞问题,而且气浮后澄清容易受天气影响;⑦某些污水处理过程中气浮也需要添加一些药剂,但其用量较低,反应时间也较短。食品工业废水中悬浮物含量较高,气浮法是良好的预处理或前处理工艺,可大大提高后续污水处理效果[3]。1.1.3膜处理法膜处理法是一种操作方便、高效,能耗低的处理技术,相比传统的污水处理技术,膜处理技术可将废水中蛋白质、糖类等有利用价值的物质进行回收再利用,因此其相比其他技术具有更大的潜力和更显著的优势。例如大豆食品生产过程中具有多种生物有效性成分,主要有低分子量的短肽链、氨基酸,利用膜技术可将其分离回收利用。在乳清废水中含有多种低聚糖,例如棉子糖、蔗糖等,是可被人体肠道所吸收利用的天然甜味剂,能够提高人体的免疫力,采用先进的膜分离技术既可以处理乳清废水,同时还能够回收乳清中的生物有效活性成分,进而提高企业的经济效益和社会效益。膜处理法主要有超滤、纳滤、反渗透等技术,目前实际应用当中还存在很多问题,例如膜污染、膜组件昂贵等。因此,在今后的研究工作中,膜种类的选择、膜清洗方式以及膜工艺和其他工艺组合使用是需要重点研究的内容。1.1.4催化氧化技术催化氧化技术包括均相氧化法、多相氧化法、超临界水氧化技术等,是在20世纪80年代中期发展起来的一种高级污水处理技术。该技术是在常温常压下利用TiO2、ZnO、Fe2O3等作为催化剂,在光和空气的条件下将有机物降解为CO2和H2O和无机离子的过程[4]。均相氧化法是将可溶性的催化剂投入到废水中,进而引起O3和H2O2的自由基反应,以此来降解污水中有机物的方法。Fenton试剂法就是均相催化氧化法的一种,有研究者利用其处理榨菜生产废水,其COD的去除率可达80%以上。还有研究者利用其处理食品添加剂废水的二级出水,在Fe2+/H2O2投加比例为1,pH值为4时,反应60min,出水COD的去除率可达83.6%。多相催化氧化技术中包括湿式多相催化氧化技术和常温常压下多相催化氧化技术,其更多的应用于有机废水的处理。有研究者采用固相合成法制备了Bi2O3-WO3光催化剂,将其和臭氧氧化进行协同降解糖蜜酒精废水,该催化剂增强了光催化效果,食品废水中的有害物质的去除有着更好的效果。

1.2生物处理技术

1.2.1序批式活性污泥法(SBR)SBR(SequencingBatchReactor)即序批式活性污泥法,是由传统的间歇式活性污泥法发展而来的,SBR的运行程序是按照一定的时间顺序来进行操作的,其序批间歇一种是说明在SBR运行操作过程中在空间上按照一定的序列、间歇的方式进行,一般情况下需要多个SBR池进行并联运行;二一种是说明SBR池的运行操作在时间上也要按照一定的次序和间歇来运行,一般情况下分为五个阶段,有进水、反应、沉淀、排水、排泥,这五个阶段形成一个周期。这样SBR池将微生物的作用在时间上进行了分割,而不影响各部分独立连续的完成处理过程。相比其他的活性污泥法,SBR反应器不需要设置沉淀池和污泥回流设备,整个工艺占地面积小,运行费用较低,而且不容易形成污泥膨胀等问题。1.2.2曝气生物滤池法(BAF)曝气生物滤池是20世纪80年代在欧美发展起来的一种污水处理技术,其主要的工作机理是在滤池内设置一定数量的载体填料,针对滤料进行培养驯化,使其表面生长一层生物膜,由于滤料具有高的表面积,这样可以保证反应池内具有高的活性微生物[5]。在滤池内进行曝气,这样微生物可以降解污水中的污染物,同时利用较小粒径的填料,使其具有截留水中悬浮物的特点。随着反应的运行,池内截留的悬浮物逐渐增多,而生物膜也逐渐老化,达到一定程度生物膜会自动脱落,然后新的生物膜开始生长,有时还需要对滤料进行反冲洗,以保证滤池的正常运行。目前该技术在食品废水处理中已经被广泛应用,而且均取得了良好的效果。但其还存在一些问题需要继续的深入研究,比如进水悬浮物浓度的控制以保证具有较长的冲洗周期,在其反应过程中生物絮凝的理论研究相对缺乏,还有一些运行参数和处理效果之间的关系还需要更进一步的研究。1.2.3膜生物反应器(MBR)膜生物反应器是膜技术与传统生物处理工艺相结合的一种新型污水处理技术,MBR中利用膜组件代替了传统生物工艺中的二沉池,作为固液分离的设备。该工艺具有占地面积小、污染物去除率高、出水水质稳定、反应器容积负荷大、污泥产率低和操作管理简便等特点。目前已在污水处理中有着广泛的应用,众多的研究者利用该工艺进行食品废水的处理。有研究者利用MBR来处理模拟的乳制品废水,结果表明出水中COD的去除率为95%以上,BOD的去除率可达到98%,氨氮的去除率为82%,总磷的去除率可达到90%,总体出水水质可满足《城市杂用水水质标准》。还有研究者利用浸没式MBR对食品防腐剂生产废水进行处理,进水COD浓度小于3400mg/L时,水力停留时间不低于7h,运行温度保持15℃,水中溶解氧浓度为2.0mg/L时,MBR出水COD的去除率在90%以上。1.2.4升流式厌氧污泥床(UASB)UASB是由荷兰瓦郝尼罕农业大学Lettinga教授研制出的,UASB反应器主要由反应区、三相分离器、气室三部分组成,在反应器底部具有大量的厌氧颗粒污泥。UASB反应器与之前反应器最大的不同就是污水由下而上进入反应器,无需设施搅拌装置,而且污泥呈现颗粒化[6]。颗粒污泥具有较高的沉降性,而且产甲烷活性高,能够大大提高反应器厌氧处理负荷。该工艺占地面积小,投资费用低,而且生物处理效率高,针对食品工业废水的特点,其在食品工业废水处理中有着较为显著的优势。目前UASB反应器已经普遍应用于味精食品、啤酒、柠檬酸、等食品工业中。有研究者利用UASB反应器处理了淀粉废水,COD容积负荷在10kgCODcr/(m3•d)以上时,COD去除率可达到90%以上。黑龙江某食品企业采用UASB+A/O工艺处理豆干生产废水,容积负荷可达到12kgCODcr/(m3•d),出水满足排放标准,即实现了环境效益,同时也产生了经济效益。山东某食品有限公司将UASB工艺用于玉米淀粉废水处理工程,容积负荷可达到8kgCODcr/(m3•d)经过处理后的废水CODcr去除率可达90%以上。

2结语

第6篇:化工废气处理技术范文

关键词:酯化废水 处理 方法

中图分类号:X703 文献标识码:A 文章编号:1672-3791(2012)12(a)-0139-01

近些年来,我国的化工产业得到快速发展,化工企业所产生的酯化废水也不断增多,对环境污染构成极大威胁。按照我国倡导绿色、节能、环保的生产理念,必须要加强对酯化废水的处理。本文在比较国内外酯化废水处理方法的基础上,总结了适合国内酯化废水的处理方式,并提出在具体设备处理过程中应该注意的注意事项。

1 国内外酯化废水处理方法对比

1.1 国外的酯化废水处理技术

西班牙Catalana de Polimers公司在处理PET生产中产生的酯化废水时,由于该公司主要产生两类废水即酯化废水和纤维废水,其排放量约为10 t/d,N、P浓度低于2 mg/L,主要使用厌氧间歇处理方法,这种方法处理后的废水,COD去除率可高达91%和76%,其中该公司在巴塞罗那规划建设的UASB酯化废水处理设施,其反应器体积为600 m3,可以除却每千克COD产甲烷0.5 m3,COD的消除率较为稳定,且可达到90%以上。

土耳其某化工厂家在处理酯化废水时,其相应的COD值分别为180 g/L、210 g/L、230 g/L,对应的pH值均为2.3。公司使用蒸馏工艺首先将原水的COD进行降低到40 g/L,使用普通活性污泥和Fenton氧化法进行处理,并比较二者之间的差距,经过分析发现,使用第一种方法即生物法,处理蒸馏过的酯化废水与生活污水的混合物,在进行稀释后等待10天后,用较低的污泥负荷才能去除大约七成的COD,但采用第二种方法即Fenton氧化法时间仅需一天且COD去除率可以达到67%。

1.2 国内酯化废水的处理方法

国内的酯化废水处理方法主要参照国外的同类企业的做法,在技术引进消化吸收的基础上,进行了一定的技术和工艺的优化,其典型代表有以下几方面。

(1)辽阳化纤公司在处理酯化废水时,采用FBOF技术,即通过浮选、生物过滤、臭氧催化氧化、过滤进行酯化废水的处理,对二沉池的出水开展进一步的处理,使得出水COD浓度可低至13 mg/L,出水的浊度可低至0.35 mg/L,所含油量低至0.26 mg/L,总铁离子含量降低到0.025 mg/L,所处理后的污水可以符合循环冷却水补充水的标准。

(2)天津石化公司在处理酯化废水时,使用“接触氧化、纯氧曝气”技术进行处理,其年处理能力可以达到20万t左右,首先将多种生产污水进行中和配比然后进行接触氧化,再次进行混合后进行纯氧曝气,通过这种技术处理后COD可以降低到100 mg/L以下,去除率高达92.9%,通过连续四次曝气后可以充分利用氧气,利用率可以达到87%~91%,所需氧气大概为1.2 m3/t。

(3)洛阳石化化纤厂所产生的废水主要是PTA和PET混合的废水,在处理时使用两次曝气、活性炭吸附技术,进水COD在7~9.5 g/L之间,PTA废水在pH值为3.5~4之间,在经过沉降后与PET废水进行混合,经过预处理将污水中的TA等杂物去除,这种方法对于有效降低COD较为有效,再进行二级曝气后,最终COD的除却率可高达90%~96%,排放标注可以符合国家一级标准。

2 酯化废水处理技术的合理选择

根据上述对国内外酯化废水处理技术的概述可以得知,生物法处理方法成本较低,但占地面积较大,所需时间较长,对技术的操作要求较高。对于生物处理方,单独使用厌氧或单独使用好氧方法很难获得较好的处理水质,但如果先使用厌氧技术进行废水处理,降低其浓度,使废水的生物进行降解,然后再使用好氧技术,可以不用因使用成本较高的纯氧曝气带来的成本压力,并降低污泥产量,这种混合方法被国内大多数新开的化工企业所采用。

3 实际设备运行时应注意的事项

化工企业的酯化废水处理装置在运行时由于某些原因会出现一定的设备、电气或工艺故障,同时由于需要年检修等,这些因素都会影响设备的正常运转,造成一定时间内的处理停止,有的甚至增加废气及废水的排出;在污水处理过程中,设备在连续运行中出现的临时故障也会影响废水的正常处理。因此要注意以上特殊或异常的生产故障,采取必要的故障排除措施,确保废水安全处理。

(1)避免开停车过程及故障处理过程对废水排出的影响,在工序控制方面,要选择恰当的酯化压力,酯化反应压力控制在210 kPa,时间控制在4~5 h内,使得酯化废水的COD浓度不超过4万mg/L。其次要严格控制工艺塔压力,否则会由于压力失控将阀门泄压导致大量的乙二醇进入废水处理系统,造成废水处理压力。再次,要及时调整尾气洗涤剂蒸汽汽提工艺,控制尾气洗涤工序后的顶部气体排放,建设可凝性气体的排放,避免超标排放。

(2)防止废水治理设施出现的故障问题,对其过程进行优化。首先要严格控制厌氧反应的反应温度,在冬天时要注意保温,还可以通过混合水池蒸汽加热的方式减轻厌氧罐的供热压力,控制好温度,对其精度进行控制。其次,要注意厌氧出水的回流,使用厌氧顶部出水部门回流进入厌氧罐的方法,可以提高其罐内的污泥浓度,降低进水浓度,增大进水量,确保设施内水流的均匀分布,防止断流。

(3)正确控制污泥负荷。为了确保整个厌氧过程的平衡,防止pH值下降,对进水负荷要进行恰当控制,不能过高,使得污泥负荷保持较低的水平。

(4)及时排出沼气,厌氧处理过程会产生沼气,沼气的作用可以促其污泥与污水混合,起到搅拌作用,但也会使污泥浮起,使得浮渣产生及出水中含有悬浮物,使水质变差,因此需要设置三相分离器,将沼气引出。

4 结语

在实际的酯化废水处理中,要根据实际状况,选择恰当的处理方法和工艺,不断研发先进的处理工艺和技术,提高酯化废水的处理力度。

参考文献

[1] 陈朝东,张志强,赵谊颂.工业水处理技术问答[M].化学工业出版社,2007.

[2] 田崇.国内外聚酯生产废水处理技术的进展[J].纺织导报,2010(11).

第7篇:化工废气处理技术范文

关键词:焦化废水;生化法;超临界水氧化;传统生化处理技术;新型焦化废水处理技术

中图分类号:X703文献标识码:A文章编号:1009-2374(2009)20-0121-02

一、当前国内外焦化废水的治理技术及其存在问题

(一)焦化废水的处理技术主要分为生化法、化学氧化法和物理化学方法

生化法方面主要有活性污泥法,SBR法,A-O(缺氧-好氧)法,以及新兴的生物强化技术、生物膜、生物流化床技术和各种生物脱氮组合工艺。化学氧化法主要有催化湿式氧化法、光化学氧化法、化学药剂氧化、臭氧氧化法等,因焦化废水处理量大,这些方法处理工业废水目前更多的是实验研究或者处理中试阶段,尚未真正投入工业运用。物理化学方面有混凝、萃取、活性炭吸附、膜分离以及超声波声化学法等,一般作为生化法的预处理或后处理方法。

(二)焦化废水的处理方式虽然很多,但目前各国应用最广泛的还是生化法

1.它利用微生物的新陈代谢使废水中的有机物分解。然而,生化处理法虽然有处理量大,适用范围广,维护费用低等优点,但也因焦化废水水质水温波动较大而处理效果受到影响。如细菌等微生物对废水的温度要求特别高,一般水温需控制在10℃~40℃之间,而地处我国南方的夏季进水水温通常在50℃左右。也同时受废水的pH值,污染物浓度的影响,所以对操作条件要求比较严格。

2.国内外所采用的生化处理技术大体相同,只不过国外在二级生化处理之前采取了更为复杂的预处理和其他方法控制进入生化系统的水质,防止有毒污染物浓度过高,并在生化处理流程之后采取三级净化系统。如美国美钢联的加里公司炼焦厂将生产的焦化废水收集后,再用等量的湖水稀释。该系统包括脱焦油、游离蒸氨、后蒸氨、调节槽、废水调节储存槽以及活性污泥处理系统等。加拿大Dofasco和Stelco公司的焦化厂采用经蒸氨去除游离氨和加碱去除固定铵后进行生化处理与深度处理。日本大部分焦化厂的废水使用活性污泥法,由于日本特有的排海优势,因此在焦化废水处理时,首先考虑降低废水中的有毒物质,在调节池中先加3~4倍稀释水,以降低NH4+-N和COD浓度。在进入曝气池之前,再进行pH值调整,加入磷酸盐,然后进行约10h的曝气,再经沉淀后的水排入海洋水体。欧洲的焦化废水处理工艺普遍采用以预处理去除油与焦油,气提法除氨,生物法去除酚、氰化物、硫氰化物、硫化物,并进行深度处理后排放。

3.当前国内对焦化废水的处理普遍采用预处理加生化处理的二级处理工艺,国外进一步利用活性炭、生物膜技术等进行三级的深化处理。我国在20世纪60年代末,冶金部冶金研究总院环境保护研究所开展了焦化废水生化处理研究,而后在马钢、武钢等工程中得到了应用,至今仍为大多数钢铁企业在焦化废水中所采用。20世纪70年代末与80年代初,宝钢从日本全部引进焦化废水三级处理技术。所谓三级处理,是采取脱酚、蒸氨、生物处理和活性碳吸附等组成的以生物处理为中心的多种物理化学方法组成的工艺流程。目前,国内大多数废水处理系统都是采用一级处理和二级处理工艺。一级处理是指高浓度废水中污染物的回收利用,其工艺包括氨水脱酚、氨水蒸馏、终冷水脱氰等。二级处理主要是指一级预处理后的出水与其他焦化废水混合,将酚氰废水无害化处理,进入以生化法为主的处理系统,如活性污泥法,A-O池,SBR池等。三级深度处理是指生化处理后的排水仍不能达到排放标准时采用再次深度净化。其主要工艺有活性碳吸附法、炭生物膜法、混凝沉淀法和氧化塘法。

4.作为生化法处理焦化废水的代表,活性污泥法是一种应用最为广泛的焦化废水好氧生物处理技术,占地小,处理效率高,工艺流程如图1所示。该方法采用曝气池活性污泥与废水中的有机物充分接触,溶解性的有机物被微生物细胞吸附、降解,最终形成代谢产物(主要是CO2、H2O);非溶解性有机物先被转化为溶解性有机物,然后被代谢和利用。但是,对于焦化废水中的难降解有机物,如多环芳烃和杂环化合物,其处理效果并不理想,出水CO浓度较高,难以满足排放标准对COD的要求。因而各废水站采用延长曝气池水力停留时间来提高处理效果,tHRT分别延至24h、36h甚至48h。由于焦化废水中多环芳烃和杂环化合物结构复杂,其降解过程需要较长时间,延长水力停留时间对处理效果起到了一定的改善作用,但出水水质仍难以达到废水排放标准对COD的要求。此外,常规生物处理对氨氮无明显去除作用,无法满足废水排放标准对氨氮的控制要求。

现有的生化处理工艺对当中酚、氰、油类等物质的脱除较为有效,但对氨氮和CODCr的去除效果非常有限。国内绝大多数焦化厂外排废水CODCr均未能达标排放。我国焦化废水通常所占比例最大的为苯酚及其衍生物,约占总质量的60%以上,而杂环化合物、多环芳烃、喹啉、苯类等难降解的毒性物质占1/3以上。难降解性有机物的比例越高,越难于实现好的生化处理效果。

二、传统生化处理技术进展

近年来,人们从微生物、反应器及工艺流程几方面着手,研究开发了生物强化技术、生物流化床、固定化生物处理技术及A/O/O、O/A/O等包含生物脱氮技术的工艺流程等。这些技术的发展使得大多数有机物质实现了生物降解,出水水质得到了改善。

生物法具有废水处理量大、处理范围广、运行费用相对较低等优点,改进后的新工艺在一定程度上提高了焦化废水的外排水质,因而也在国内外得到广泛使用。但是生物法对进水污染物含量有严格要求,稀释水用量大,废水的pH值、温度、营养、有毒物质浓度、进水有机物浓度、溶解氧量等多种因素都会影响到细菌的生长和出水水质,这也就对操作管理提出了较高要求。另一方面,生化处理设施规模大,停留时间长,投资费用较高等方面的缺点也使人们急切地寻找合适的替代方法。于是一些新的方法应运而生。其中包括以超临界水氧化法,湿式氧化法为代表的新型氧化技术,微波与超声波法、芬顿试剂处理法、光催化纳米材料处理等高级氧化技术,药剂絮凝的新物化法、电化学法氧化技术、等离子体处理技术以及一些以废治废的方法如烟道气处理剩余氨水或者焦化废水等。

三、新型焦化废水处理技术

(一)超临界水氧化技术概述

超临界水氧化(super crtical water oxidation,SCWO)是一项新兴的有机废水处理技术,它利用超临界水表现出的极性或者非极性有机溶剂的特性,与氧化物反应,将废水中的有机物分解成完全氧化的产物如二氧化碳等。在水的临界点(Tc=374.3℃,Pc=22.1MPa)以上,水的密度、黏度、介电常数、离子积的降低,水分子间的氢键网络结构消失,水的介电常数降低到与有机溶剂近似,此状态下的超临界水具有一系列特殊性质。通过调整超临界水体系温度和压力,可以控制体系中所进行的反应的速度和反应进行的程度。

超临界水的这些特性使超临界水氧化反应与生化处理法、湿式空气氧化法、燃烧法等传统的废水处理技术相比具有一些独特的优势。例如,在有机污染物的处理过程中,超临界水特殊的溶解性能使得本来在液相和(或)固相中有机物与气体(通常为氧气)之间发生的多相反应,转化为超临界水中的均相反应,消除了相间的传质阻力;超临界水特殊的传质、传热和扩散性质,使得超临界水氧化过程的反应速度比较快,通常在几秒到几分钟内,反应的转化率就可达到100%小分子气体。超临界水氧化并不针对某种或某类有机物,而是对几乎所有的有害有机物均有效,因而是一种常用的有机物处理技术,尤其适合于高毒性、难降解的污水、污泥处理。经处理后的污水可达标排放或零排放,无二次污染,处理时间短,运转费用低。相对于传统方法难以处理的废水体系,超临界水氧化技术已成为一种具有很大潜在优势的环保新技术。美国国防部和能源部已用SCWO 技术处理化学武器、火箭推进剂、炸药等高能废物。此外,废水产生的余热还可用于发电和供热。超临界水氧化处理废水的工艺最早是由Modell提出的,1985年由Modar公司建成超临界水氧化的中试装置,其流程如图2所示:

超临界水氧化处理过程如下:首先,用废水泵将废水压入反应器,在此与一般循环反应物直接混合而加热,提高温度。其次,用压缩机将空气增压,通过循环用喷射器把上述循环反应物一并带入反应器。有害有机物与氧在超临界水相中迅速反应,使有机物完全氧化,氧化释放出的热量足已将反应器内的所有物料加热至超临界状态,在均相条件下,使有机物和氧进行反应。离开反应器的物料进入旋风分离器,在此将反应中生成的无机盐等固体物料从流体相中沉淀析出。离开旋风分离器的物料一分为二,一部分循环进入反映器,另一部分作为高温高压流体先通过蒸汽发生器,产生高压蒸汽,再通过高压气液分离期,在此氮气与大部分二氧化碳以气体物料离开分离器,进入透平机,为空气压缩机提供动力。液体物料经排出减压阀,进入低压气液分离器,分出的气体进行排放,液体则为洁净水,而作为补充水进入水槽。

(二)超临界水氧化法的特点

1.氧化效率高,水溶液中有机物的去除率可达到99.9%以上。

2.水溶液中有机物浓度达到 5%以上时,有机物氧化释放出的反应热可以维持反应所需热量,在正常运行中无需外界供热,实现自燃。

3.反应在密闭容器中进行,密封条件极好,有利于有毒、有害物质的氧化处理,不会对环境带来二次污染。

4.有机物氧化彻底,处理后的排水可以直接排放,不需要后续处理过程。

5.几乎对所有有机污染物均可进行氧化分解。

6.由于均相反应停留时间短,反应器结构简单,使用较小体积的反应器就可以处理较大流量的有机污染物,有利于工业实际运行。

参考文献

[1]王绍文,钱雷,秦华,等.焦化废水无害化处理与回用技术[M].北京:冶金工业出版社,2005.

[2]邹家庆.工业废水处理技术[M].北京:化学工业出版社,2003.

[3]何苗,顾夏声.杂环化合物和多环芳烃生物降解性能的研究[J].给水排水,2006,2(22).

第8篇:化工废气处理技术范文

【关键词】碱性废水;烟道气;脱硫;除尘;循环回用

一、废水处理工程运行管理

城市废水处理厂由于地域、水源和水质要求的不同,采用的工艺也各不相同。特别是近年来,由于新的工艺和方法的不断出现,废水处理厂从结构到处理过程出现了极大的变化,充分了解城市废水处理厂的工艺特点是成功治理废水的前提,皂化废水含碱性物质、油和有机物,COD高达2~H、i艺流程与主要设计盎数6万mg/L,PH值大于 12,皂化废水由于有机物浓度高,如单独进行生化或物皂化废水先进入预处理地进行沉淀分层,上层皂脂化处理都很难达到工业废水排放标准,且单独采用生化回收利用,下层底泥用来制脱模剂,中层废水用泵打入法废水处理费用高,设施占地面积大,脱硫除尘后的这种废水都是直接排入自然水系,不仅污染生态环废水经过筛式滚动微滤机分离出大颗粒碳粒和部分悬境,而且浪费了大量有用物质,大部分废水返回锅炉脱硫系统回用,少部分盈余采用湿式水膜废水先经过二级射流气浮除去大部分有机物,然后与冲除尘装置除尘,除尘效率达95%,治理关键是消除废水中钙、镁离子和高氟离子。中小型锅炉湿法除尘废水循环系统一般沉淀池容积小,废水沉降不完全,且由于废水循环周期短,SO2被除尘水吸收而生成的HSO离子来不及与烟尘中碱性物质中和,使得废水pH值小和悬浮物过多,造成对循环系统的严重腐蚀和堵塞,治理并保证循环系统正常运转的关键是采用中和技术降低废水中HSO离子以及采用净化工艺降低废水中悬浮物浓度。

二、废水中和处理技术

对于中小型锅炉湿法除尘废水治理来说,最常用中和处理工艺还是投放石灰,主要原因是石灰价廉,来源广泛,对于各种酸性废 水适应性强。但石灰的缺点也是显而易见的,由于石灰在水中的分散性差,形成浆液后流动性不好,在中和反应过程中石灰接触废水中二氧化硫后,较易被生成而不能继续反应的CaSO4所复盖,此外,烟气中的 CO2也减缓二氧化硫中和反应的进行,这一切都造成石灰对酸性除尘废水中和反应效率差。由于石灰中和反应后的泥渣量大,以及对其保管、操作复杂等方面的问题,都影响了石灰的应用。采用工业碱在上述方面优于石灰,但限制真使用的是其价格问题。我国每年排放大量碱性工业废水,各地还直接采用碱性工业废水稀释后作为除尘用水进入锅炉除尘系统直接洗涤燃煤烟气,可以取得较高的烟气脱硫和除尘效率,且排放后的废水pH值达6~7,达到以废治废,燃煤烟气脱硫除尘和除尘废水及工业废水同时治理的目的。脱硫除尘后的废水由于含有部分原碱性废水的污染物,必须进行净化理后才能继续循环回用或排放,各地采用的处理工艺大多以炉渣过滤为主,也有的采用混凝气浮或进入生化处理,尽管这样一来提高了除尘废水的处理费用,但以烟气脱硫和除尘后循环回用及碱性工业废水联合处理的综合效益考虑,还是十分合算的。

三、中国烟气治理的发展现状

近几年经过治理,电力工业燃煤排放的二氧化硫等污染物已有相当改观,但按国家规定的排放标准,仍有相当部分燃煤机组属超标排放。就拿拥有全国燃煤机组近一半的原国家电力公司系统来说,目前就有约10%的燃煤机组污染为超标排放。要在今后几年燃煤机组继续增加、发电量继续增长的情况下实现污染物达标排放和减排,任务十分艰巨。此外,要减少火电机组污染物的排放,电力工业还需解决环保治理投资大、时间紧的问题。脱硫任务重的火电厂大都集中在我国中、西、南部等经济欠发达地区,资金筹集难度大。

四、控制锅炉烟气污染的对策

1.天然气是一种高品位的优质能源,把它用于发电燃料时,不能单纯的将现有燃煤锅炉改为燃气锅炉,而应在锅炉前增设燃气轮机,做功后的尾气再进锅炉,提高整个发电机组的效率,增加发电量,以消纳一部分因燃料价格不同而造成的发电成本的增加,减轻用户的负担。采用天然气发电后,其环保效益从减少排放总量来说,烟尘和二氧化硫的排放量将大幅度减少,氮氧化物的排放量也会有不同程度地减少。其效果是十分显著的。就其对城市大气环境质量的影响来看,由于电厂大多建在城区,又是高烟囱排放,有利于扩散,加之污染治理设施较为完善,其影响程度可得到有效控制。因此,在发展天然气发电时,因根据不同地区的环境要求、天然气来源及其价格、发电厂所处的地理位置等诸多方面因素进行合理性分析,以取得全社会环境效益事半功倍的效果。

2.在全国建立一批以动力煤的洗选、配煤、型煤、水煤浆等综合加工配送工程,按燃煤用户的需要,提供质量优良的加工产品;结合电力、工业和民用燃煤设备的规模和特点,通过技术和经济分析、分期、分区域对燃煤设备进行技术改造和设备更新,尤其应强化对中小型燃煤设备的技术改造和更新工程,推广应用低硫煤和层燃燃煤设备燃用筛选块煤等节能减污技术;在已有水煤浆技术成果的基础上,为完成“十五”期间的节油目标,应进一步完善水煤浆代油技术,通过工程示范,积累经验,为大型燃煤设备的应用创造条件。

3.为促进火电厂烟气脱硫国产化,必须研究制定相配套的鼓励政策,如向承担建设火电厂烟气脱硫国产化的企业和承包火电厂烟气脱硫工程的工程公司提供长期低息优惠贷款政策;对进口烟气脱硫成套设备分阶段合理征税,引导和鼓励企业使用国产烟气脱硫设备的政策;鼓励烟气脱硫国产化依托工程所在的电厂多发电,提高其经济效益的政策等等。政策是否配套,影响到规划目标能否如期实现。国家有关部门应研究制定火电厂烟气脱硫关键技术和设备国产化的政策,逐步形成促进火电厂烟气脱硫国产化和产业化的配套政策体系。

结束语

中国燃煤SO2排放量连续多年超过2000万吨,电厂锅炉和燃煤工业锅炉SO2排放量约占全国SO2排放量的70%。对“十五”期间中国燃煤锅炉治理技术的市场需求、研究和应用现状、行业发展状况进行了综述。从调整能源结构、合理利用天然气,积极发展和实施洁净煤技术,制定促进火电厂脱硫国产化的配套政策三方面对燃煤锅炉烟气污染治理具有积极的意义。

参考文献

[1]中国环境科学研究院标准所.大气污染达标技术指南,1997

[2]《中国环保科技及产业研究》课题组.中国环保科技及产业研究.2000

第9篇:化工废气处理技术范文

关键词:有机废气 处理 技术研究

中图分类号: U491 文献标识码: A 文章编号:

一、对目前有机废气处理技术的概述

目前,国内外治理有机废气比较普遍的方法有:吸附法、吸收法、氧化法等。

1活性炭吸附法

利用固体吸附的原理从气相或者液相去除有害成分的过程称为吸附操作。根据吸附机理,可以将吸附剂分为物理吸附材料和化学吸附材料。化学吸附材料通常通过疏水键化学吸附作用去除有机污染 物质,如用于吸附去除邻苯二甲酸二甲酯类物质的酚醛树脂吸附剂、BA接枝改性聚丙 烯纤维等。但是化学吸附材料通常应用于水相有机污染物质的去除,在有机废气方面的应用较少,可能是因为在气一固两相界面上有机废气污染物质与吸附剂之间的接触时间太短,不利于化学吸附反应的进行,吸附效果不理想。因此在吸附法治理有机废气的实际应用过程中,常用的吸附剂为活性炭 、沸石等物理吸附材料,因为这些吸附剂呈现状结构,比表面积大,物理吸附作用强,适用范围宽。大量的研究结果表明与蜂窝状、颗粒状吸附材料相比,纤维状吸附材料具备传质速率陕的优点。因此,在选择废气污染物吸附材料时可以优先选择纤维状材料,以提高处理效果。

2吸收法

1)液体吸收法

吸收法主要是指液体吸收法,通过废气与吸收剂的接触,使其中的有害组分被吸收剂所吸收。经过解吸,将其组分除去或回收,使吸收剂再生,重复使用。废气处理设施中普遍使用的水喷淋装置就是基于此原理。吸收过程分为物理吸收与化学吸收。物理吸收主要依据相似相溶原理,水是一种最常用吸收剂,可以把溶于水的有机溶剂气体如丙酮、甲醇、烟等去除,但水溶性尚差的“三苯”物质不能被水吸收。化学吸收是基于吸收试剂上活性基团可以与有机废气污染成分发生的化学反应进行的吸收过程。

2)吸收法国内外研究现状

吸收法处理有机废气污染物的国内外研究状况。根据研究可以总结出以下3个结论:

国内外研究者研究了不同溶剂吸收法对各种 有机废气污染成分的处理效果,包括苯类(苯甲苯、二甲苯、苯乙烯)、酯类、酮类、有机烃;

吸收剂主要包括有机溶剂、表面活性剂和水,还包括新型环保型吸收剂环糊精;

(3)有机废气的具体成分不同,吸收剂选择不同。

3催化氧化燃烧法

对于有毒、有害、不须回收的VOCs,氧化法是一种较彻底的处理方法。它的基本原理是VOCs与O2发生氧化反应,生成CO2:和HO2,化学方程式如下:a CXHYOZ:+bO2---,cCO2+dO2 氧化反应类似化学上的燃烧过程,但由于 VOCs的浓度太低,所以反应中不会产生可见的火焰。氧化法一般通过以下两种方法使氧化反应能够 顺利进行:一是加热,使含VOCs的废气达到氧化反应所需的温度,即热氧化法;二是使用催化氧化。催化氧化是指在一定压力和常温条件下,以金属材料为催化剂,如Pt、Pd、Ni等,废气中得有机污染物与空气、氧气、臭氧等氧化剂进行的氧化反应。由于催化剂的存在,催化燃烧的起燃温度约为250℃一300℃。高效催化剂是催化氧化法的关键核心。

4生物处理法

生物处理技术的实质是附着在滤料介质中的微生物在适宜的环境条件下,利用废气中的有机成分作为碳源和氮源,并将有机物分解为二氧化碳、水、无机盐等无害或少污染的物质。生物处理技术包括生物吸收法和生物过滤法,生物处理技术具有设备简单、运行费用低、较少形成二次污染等优点。

二、几种主要有机废气处理技术比较与总结

1适用范围比较

活性炭吸附技术一般适合于污染物浓度低于2000 mg/m3以下的有机废气处理,在酸性环境下的吸附效果优于碱性环境,且气体温度最好为常温,若废气温度过高,可选配气体冷却装置来降低废气温度,使之达到活性炭最佳吸附状态。溶剂吸收法主要适用于高浓度有机废气或者大风量低浓度的有机废气处理。催化燃烧技术一般适合污染物浓度在2000~6000 mg/m3之间的有机废气处理,若废气温度大于180℃,废气浓度可低于2000 mg/m3也可,但废气中如含有硫等有害于催化剂中毒的成分不适合该技术。

2存在问题比较

1)活性炭的吸附性与再生处理

活性炭吸附是将污染物质从气相固定到自身,并没有从根本上解决污染消除的问题,当多种气态污染物同时存在时,活性炭的吸附能力大幅低于只含有一种气态污染物时的吸附效率。而对于吸附饱和的活性炭,一般处置方式有两种,一是废弃,直接烧掉或填埋,这样会造成资源浪费。二是将其再生反复使用,但活性炭的再生仍然存在一些问题,主要包括:再生过程活性炭有效部分损失较大、再生后吸附能力有一定下降,再生尾气的二次污染等。

2)吸收液吸收效率低

液相吸收法是将污染物质从气相到液相的物理转移或化学转变,气态污染物液相喷淋吸收针对高浓度有机废气或者大风量低浓度的有机废气的治理较好,而针对低风量低浓度有机废气治理效率仍有待进一步提高。

3)催化剂选择苛刻

当使用催化氧化燃烧处理有机废气时,某些气体污染物燃烧氧化反应条件苛刻,必须需要高温、高空、高水蒸气分压,因此选择的催化剂必须具各高活性、高热稳定性和高水热稳定性,以及一定的抗中毒能力;常用的催化剂是Pd、Pt、Rh、Au等贵金属催化剂,但这些贵金属价格昂贵、易烧结,增加了催化氧化处理成本。

三、有机废气处理技术的展望

随着对有机废气处理技术的研究开放力度不断加大,除上述传统的处理工艺技术外,一些新的技术也逐步被开发应用,为有机废气的治理提供了更广阔的途径。

1膜分离法

膜分离法是使用半渗透性的膜将VOCs从废气中分离出来的方法。基本机理是基于气体中各组分透过膜的速度不同,透过膜的能力不同,因为每种组分透过膜的速度与该气体的性质、膜的特性与膜两边的气体分压有关。

2 综合处理技术

综合处理技术主要是指将多个传统处理工艺有机结合,比如吸收一解吸一变压吸附组合工艺、吸附催化氧化技术等,这类综合处理技术具有极强的针对性和互补性,处理效果远远优于单一方法。

四、结束语

通过本文的论述,对于有机废气处理技术的合理选择,不论采用传统还是新的处理技术都必须符合使用性能、范围、等因素。因此我们在处理企业有机废气污染问题时,一定要结合实际情况,综合评估各项因素。不仅有效提高有机废气处理效率,同时也减少了成本支出为企业带来高额的经济效益。

参考文献:

[1 ]袁峰,魏俊富,汤恩旗等.BA接枝改性聚丙烯纤维对水中邻苯二甲酸二丁酯的吸附[J].天津工业大学学报,2009