公务员期刊网 精选范文 生物化学在医学中的应用范文

生物化学在医学中的应用精选(九篇)

生物化学在医学中的应用

第1篇:生物化学在医学中的应用范文

1 传统医学生物化学与分子生物学实验教学的局限性 

生物化学与分子生物学知识繁多、内容抽象、概念枯燥,理解和记忆的难度很大,使得不少学生越学越记不住,越学越难理解,产生厌烦和畏难情绪。随着时间的积累,各个学生对生物化学与分子生物学知识的掌握参差不齐,从而影响在实验课上的表现和发挥;生物化学与分子生物学教材更新迅速,但实验内容陈旧落后,主要为一些简单的验证性实验,与临床实践、实际应用明显脱节,严重滞后于学科发展;①实验课教学采用教师预先优化实验环节,讲授实验原理、介绍实验试剂、演示重要操作步骤、强调注意事项,然后学生按照操作步骤依次做实验、写实验报告的教学方法,学生仅仅被动学习,缺乏主动思考,很多学生甚至出现了抄袭实验报告的现象,根本不知其所以然,更不懂得实验中观察实验现象,发现问题、分析并解决问题的重要性;生物化学与分子生物学实验课是一门强调学生动手操作,在动手的过程中独立思考,发现问题、分析问题、解决问题的重视实践的学科,但由于实验操作中以组为单位,有些学生不亲自做实验,抄袭实验报告,养成了眼高手低的习惯,对于临床本科生而言,不利于今后的发展;可见,传统实验教学理论与实践脱节,对其改革是学科发展、培养创新型人才的教育需求。

2 应用分层教学法,全面改革医学生物化学与分子生物学实验教学 

分层教学又称分组教学、能力分组,是教师根据学生的知识、能力水平和潜力倾向把学生科学地分成几组水平相近的群体并区别对待,使得各群体在教师恰当的分层策略和相互作用中得到最好的发展和提高。根据分层教学的理念,教师可以根据各个学生对生物化学与分子生物学知识的掌握、能力水平及个人的发展方向,将实验课分为基础实验、综合实验、设计性实验等。医学的学习过程是一个重视实践的过程,所以基础实验、综合实验作可为必修课程要求每个学生都参加并进行实验考核;而设计性实验可作为选修课程,根据学生自己的科研兴趣及未来发展志向,自愿选择。大体规划如下: 

2.1 精选基础实验,掌握基本实验技能 

基础实验的教学目标是掌握基本实验技能,如医学生物化学与分子生物学实验中常见玻璃仪器的使用、清洗和干燥、电泳技术、层析技术、光谱光度技术、离心技术、物质的分离提纯及含量测定。按照教学目标,可安排如下基础实验:血清蛋白含量的测定、血清蛋白醋酸纤维薄膜电泳、氨基酸薄层层析、肝脏DNA的提取等。通过基础实验,学生加深了对基本理论知识的理解,掌握了分光光度计、离心机、电泳仪、水浴锅等常见生化仪器的使用,熟悉了基础实验的操作过程,为开设综合实验、研究型实验奠定了基础。 

2.2 开设综合性实验,提高动手能力和科研素质 

综合性实验的教学目标是提高学生的动手能力,培养分析问题、解决问题等科研素质。综合实验侧重以生物大分子的分离、提纯及测定为主,涉及各种实验技术的综合。②为了达到上述教学目标,可筛选以下实验:细胞核分离纯化及DNA、RNA含量的定量测定、聚丙烯酰胺凝胶电泳分离血清蛋白、碱性磷酸酶的提取和测定等。通过基础实验课的学习,学生已掌握了基本实验技术。在综合性实验的开展过程中,要突出学生的主体地位,以学为主,以教为辅。学生通过预习课本,动手实验、发现问题、分析问题,最后解决不了的问题,教师可以组织学生讨论,最后再答疑,指导实验的完成。通过实验,学生对实验原理有了更深入认识、提高了发现问题、分析问题及解决问题的能力,发挥了学生的主观能动性。如“细胞核分离纯化及DNA、RNA含量的定量测定”实验中,由于细胞质、细胞核的水解液中容易吸入少量沉淀,导致比色时吸光度偏大,实验数据有偏差,出现该问题怎样解决呢?首先让学生观察实验现象,试管中的反应液是不是有悬浮物,不清澈呢?然后分析问题。根据分光光度计的测定原理Lamer-Beer定律A=KCL可知,在实验条件一定的情况下,A与C成正比,那么吸光度(A)偏大是由反应液的浓度(C)增大而引起的。是什么原因引起反应液的浓度增大呢?引导学生思考,是由于吸取水解液时混入少量沉淀而造成的。那如何解决该问题呢?是不是可以采用离心技术,将悬浮物沉淀,再用上清液比色呢?通过离心前后实验结果的比较,学生懂得了实验中发现问题的重要性,体会了运用所学知识去分析并解决问题的成就感。当然,也有同学实验数据还没认真分析,就已经把反应液倒掉了,若实验数据有问题,已来不及查找原因,在这种情况下,可以让学生再重复进行测定部分的实验。通过重复实验,学生了解到保存实验材料的必要性及其对实验结果分析的重要性。综合实验的开设,提高了学生分析问题、解决问题的能力,更重要的是学生通过自己的主动学习,参与实验的热情提高,对实验过程的理解更加透彻,科研素质得到了提升。 

2.3 组织“研究性实验”,突出学生创新能力的培养 

研究性实验可作为选修课,实验题目待定或由各学业导师出相关题目,让学生参考。学生根据自己的专业特点、兴趣爱好、发展倾向选择研究项目,由学业导师负责指导。学业导师负责做好以下相关工作:(1)帮助学生选题,引导学生查阅资料,设计实验并跟踪指导实验;(2)做好实验室开放工作,保障实验药品、器械的正常供应;(3)帮助学生分析实验结果。③当然,研究性实验也可以在学业导师自己的实验室进行。在完成实验的过程中,学生围绕自己感兴趣的课题经历了查阅资料、选择材料、确定方案、准备试剂、分析结果、撰写研究报告等一系列过程,教师则全程跟踪指导。研究性实验的开设让学生体会到科研的过程,体会到自己查找资料、学习知识的过程,体会到发现问题、解决问题的过程,体会到独立思考在科研中的重要性,培养了严谨的科学态度,同时提高了学生的动手能力,激发了学生对科研的热情,提高了学生的创新能力,更重要的是提高了学生的独立性和自信心,这对学生日后从医或搞科研是非常重要的。在教师的指导下,一些学生通过查阅资料后提出有价值的问题,写出课题申请,获得了大学生创新项目的资助,还有一些学生将自己的研究成果在学术刊物发表。④可以说研究性实验为那些喜欢做实验、搞科研的学生提供了一个平台。 

总之,应用分层教学法,开设基础实验、综合实验、研究性实验,是全面改革医学生物化学与分子生物学实验教学的有效途径。各学校根据情况设定实验内容,本文只提供了一种改革思路,仅供参考。 

*通信作者:李翠萍 

基金项目:新乡医学院高学历人才资助计划(505026) 

注释 

第2篇:生物化学在医学中的应用范文

关键词: 石墨烯;生物传感器;靶向给药

中图分类号:TQ 127.1 文献标志码:A 文章编号:1672-8513(2011)05-0327-06

Functional Grarhene: A Novel Plateform for Biomedical Applications

YANG Wenrong1,2

(1. Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia;2. School of Life and Environmental Sciences, Deakin University,Geelong, Victoria 3217, Australia)

Abstract: Atomically two dimensional thin sheets of carbon known as “graphene” have captured the imagination of much of the scientific world since it was discovered in 2004. The graphene and its related materials have come to the forefront of research in biomedical research due to their unique electronic structures and properties, bolstered by other intriguing properties. This paper summarizes some applications of graphene in the field of biosensors and the targeted drug delivery systems.

Key words: graphene;biosensor;targeted drug delivery

石墨烯为碳单质材料,其结构由一层密集的、包裹在蜂巢晶体点阵上的碳原子以sp2杂化连接而成的单原子层组成,具有超大的比表面积,两面都可以通过共价、非共价作用与生物分子、高分子[1-2]及有机药物分子结合[3],从而对外嫁接其它分子,并因此拥有超高的电荷负荷量.由于这些独特的性质,石墨烯在生物传感[4]及药物递送方面具有极高的研究开发价值[5].本文重点介绍了近5年来石墨烯在这2个方面的应用情况.

1 石墨烯简介

1.1 石墨烯简史

作为碳材料,金刚石和石墨这2种三维结构为人们所熟知.1985年,美国和英国的3位科学家Kroto、Smalley和Curl率先发现 了C60[6].C60是由60 个碳原子组成20 个六边形和12个五边形构成的足球状碳单质,又称为富勒烯,属于零维结构碳材料 (图1).1991年,日本科学家Sumio Iijima使用石墨电弧放电法来制备富勒烯,当他用高分辨透射电子显微镜观察产物时意外地发现了一种管状的碳单质――碳纳米管[7].碳纳米管的出现再一次将碳材料的维度扩展到一维空间.当零维、一维和三维的碳材料被成功发现及合成后,人们开始关注二维晶体碳材料.关于准二维晶体――1个原子层厚度的晶体的存在性,科学界一直存在争论.早在1934年Peierls等认为准二维晶体材料由于其本身的热力学不稳定性,在室温环境下,会迅速分解或拆解.但是人们对二维晶体材料的探索与研究一直没有放弃.2004年,英国曼彻斯特大学的物理学教授Geim及Novoselov博士领导下的研究小组用一种极为简单的胶带纸剥离方法观测到了单层石墨晶体即石墨烯,并研究了其独特的电学性质[8],引起了科学界新一轮的先进“碳”材料的研究热潮,他们也因此荣获2010诺贝尔物理学奖.

1.2 石墨烯的制备方法

目前,研究人员发现可以有多种方法制备石墨烯(图2),其主要方法有机械方法和化学方法2大类.机械方法包括微机械分离法、取向附生法和加热SiC方法等 ;化学方法包括化学还原法与化学解离法等.

微机械分离法是最普通分离法,直接将石墨烯薄片从较大的晶体上剪裁下来.2004年Novoselov等用的胶带纸剥离就属于这种制备方法.该法制备的单层石墨烯可以在外界环境下稳定存在.取向附生法又称晶膜生长法或化学气相沉积(CVD),是利用生长基质原子结构“种”出石墨烯[9].该法首先让碳原子在1000℃高温下渗入钌,然后逐步冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层碳原子布满了整个基质表面,最终长成完整的一层石墨烯.除了钌外,也可以用其它金属作为基底生长石墨烯[10-11].加热 SiC法是通过加热单晶6H-SiC脱除Si,在单晶(0001) 面上分解出石墨烯片层[12].具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热除去氧化物.用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1400℃左右后恒温一段时间,从而形成极薄的石墨层.采用该方法可以获得大面积的单层石墨烯, 并且质量较高.然而由于 单晶SiC的价格昂贵,生长条件苛刻,并且生长出来的石墨烯难于转移,因此该方法制备的石墨烯主要用于以SiC 为衬底的石墨烯器件的研究.

化学还原法是将氧化石墨与水以一定比例混合, 用超声波振荡至溶液清晰无颗粒状物质,加入适量水合肼在100℃回流一段时间,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯.Ruoff 研究组利用化学分散法制得厚度为1 nm左右的石墨烯[13].化学解离法是将氧化石墨通过热还原的方法制备石墨烯的方法,氧化石墨层间的含氧官能团在一定温度下发生反应,迅速放出气体,使得氧化石墨层被还原的同时解离开,得到石墨烯.这是一种非常有用的制备石墨烯的方法[14].

1.3 石墨烯的表征

石墨烯的形貌可以通过光学显微镜、原子力显微镜、高清晰扫描电镜、透射电镜及拉曼光谱进行表征[15] (图3).在使用光学显微镜时, 石墨烯只有当沉积在具有特定厚度氧化层的单晶硅片上时,才能被光学显微镜捕获.研究发现,由于石墨烯和衬底对光线产生干涉,不同层数的石墨烯会显示出特有的颜色和对比度.原子力显微镜(Atomic Force Microscopy,AFM)通过检测样品表面和一个微型力敏感元件 (探针)之间的作用力来研究物质的表面结构及性质,是观测石墨烯最有效工具之一,在观察石墨烯表面形貌、鉴定石墨烯层数和厚度的过程中发挥了重大作用.单层石墨烯原子层厚度约为0.34nm,考虑表面吸附杂质,实际厚度约为0.5~1nm.在原子力显微镜下可测量石墨烯的厚度,由此可推算出石墨烯的层数.透射电子显微镜(Transmission Electron Microscopy,TEM)采用透过样品的电子束成像.扫描电子显微镜(Scanning Electron Microscopy,SEM)采用电子束在样品表面扫描激发二次电子成像.通过TEM 和SEM 可直接观测石墨烯的表面和层片结构.例如,从SEM 图像可知石墨烯的二维平面是否光滑平整,是否存在褶皱.通过TEM图像,可以直观判断出石墨烯的层数.另外,通过电子衍射图像可以准确判断石墨烯的六边形排列平面结构以及单层特性.拉曼光谱(Raman Spectroscopy)在研究和表征石墨材料的历史上曾发挥了重要的作用.石墨晶体一旦被剥离为单碳层石墨烯,其电子结构发生明显的变化,通过拉曼光谱可以清楚观测到其在1580cm-1的G峰和2700cm-1附近D峰的差别.5层以下的石墨层可以用拉曼光谱进行判定,尤其是可以利用D峰区分单层石墨烯片和多层石墨烯片.在过去40 年内被广泛用于检测热解石墨、碳纤维、玻璃碳、沥青基石墨泡沫、纳米石墨带、富勒烯、碳纳米管和石墨烯.目前,拉曼光谱主要作为一种无损检测手段,对石墨层数和缺陷进行鉴别.

1.3 石墨烯的特性

石墨烯之所以能引起科学家们巨大的研究热情,首先是因为它具有超常的电学性质,如通常材料的电学性质,由具有有限的有效质量且遵从薛定锷(Schrodinger)方程的非相对论电子描述,而对单层石墨烯的实验研究发现其中的电子输运由狄拉克方程来确定.还有,通常导体在没有巡游电子的时候,就会失去其导电性.然而研究发现即使在单层石墨薄片中,没有巡游电子,依旧存在一个最低导电率.同时,石墨烯具有的场效应特性、超高比表面特性、高强度特性(被认为强度超过金刚石)、储氢特性、催化特性、生物传感特性以及

越来越多正在被揭示的特性和被预测的潜在应用吸引着全世界的科学家们[16].在未来几年内,石墨烯将在特殊传感器、高性能复合材料、催化剂、高性能电池、显示器材料领域得到突破性的应用进展.石墨烯分解可以变成零维的富勒烯,卷曲可以形成一维的碳纳米管,叠加可以形成三维的石墨,这些功能都为石墨烯的深入应用提供了广阔领域.

2 石墨烯在生物传感器上的应用

由于石墨烯每个原子都在表面上,对外界分子的光响应与电响应极其灵敏,同时,嵌入生物传感器界面的石墨烯可增大电极的有效表面积,为石墨烯生物传感器的研发提供了非常有利的基础.

2.1 单分子检测器

纳米尺寸的功能颗粒能够在单位面积上固定大量的生物分子,形成高效的生物传感器或生物质催化剂.这些材料具有最佳的传感器性能,而且成本低廉.与目前电子器件中使用的硅及金属材料不同,石墨烯减小到纳米尺度甚至单个苯环时同样保持很好的稳定性和电学性能,使其应用于探索单电子器件成为可能.Schedin等人首先将石墨烯制作成为单分子检测器来检测NO2[17].

2.2 基于荧光淬灭作用的生物传感器

氧化石墨烯具诱导淬灭荧光的性质,这种性质是由于其不均一的化学结构及电子性质.发挥荧光淬灭作用的是氧化石墨烯中sp2杂化的晶域,因此还原后的氧化石墨烯的淬灭效果可以大幅度提高.研究表明,这种荧光淬灭效应源于氧化石墨烯与荧光物质间的荧光共振能量转移,与氧化石墨烯结合后的荧光物质将丧失荧光效应,利用此性质可以研发出一系列分子生物传感器.陈国南研究组通过标记荧光染料的单链DNA 吸附于氧化石墨烯上制备出一种复合物用于目标单链DNA 的检测[18](图5).氧化石墨烯对荧光标记的ss-DNA 具有荧光淬灭作用.目标ss-DNA通过碱基互补配对原则与荧光标记的单链DNA特异结合形成双螺旋,改变分子在氧化石墨烯片上的构象,从而使得荧光恢复,实现了对单链DNA的高灵敏的选择性检测.该方法利用碱基互补配对原则检测目标ssDNA,具有高度的选择性,拥有潜在的实用价值.

Cyclin A2是细胞周期蛋白(Cyclin)家族的一员,它对于细胞复制及翻译的启动和细胞周期调节起着关键的作用,另外,Cyclin A2在很多类型的癌症中都能表达,它已成为早期癌症的预警指标和抗癌靶点.因此,发展一种可以简便、灵敏及高选择性检测Cyclin A2的方法对于早期癌症的诊断预测及治疗具有重要意义.但是,由于大多数的肽与蛋白结合而不能产生一个容易测量的输出信号,这严重阻碍了肽作为检测探针对蛋白的均相检测.现在,大多数均相检测蛋白的方法都是基于蛋白-抗体之间的相互作用,严重限制了这种方法的推广使用.曲晓刚课题组使用荧光标记的p21 (WAF-1)衍生的Cyclin A2结合序列,并借助于氧化石墨烯或者单壁碳纳米管超强的荧光淬灭能力,发展了一种简便的、高灵敏和选择性的信号增强的荧光方法来检测早期癌症的预警指标Cyclin A2[20].他们通过实验发现,对于Cyclin A2的检测,氧化石墨烯(GO)比单壁碳纳米管(SWNTs)更具优越性.用GO得到的直接检测限为0.5 nm,比用SWNTs优异10倍;由于其是基于荧光增强实现检测的,所以可以用多孔板进行高通量的筛选.这种方法也可通过改变相应的肽探针扩展到其它的非酶蛋白的检测.通过使用不同染料标记的多个寡聚肽识别探针,可实现蛋白的多元检测.

2.3 其他功能性传感器

哈佛大学和美国麻省理工学院的研究人员研究发现石墨烯――仅1个原子厚度的非晶体碳复合薄膜有可能制成人工膜用于DNA测序[19-20].研究人员在石墨烯上钻出纳米孔,通过检测孔隙的离子交换证实长DNA分子能像线穿过针眼一样地通过石墨烯纳米孔.石墨烯上的纳米孔是一个小到足以分辨2个近邻核苷碱基对的纳米孔,当DNA链通过纳米孔时,就可对核苷碱基对进行鉴定.目前利用纳米孔进行测序仍存在一些困难,包括控制DNA穿过纳米孔的速度,如果这些技术难题被攻克,纳米孔测序将成为非常廉价和快速的DNA测序方法,并有可能推动个体化的卫生保健于预防.

董绍俊课题组利用化学法,通过血红素与石墨烯之间π-π相互作用合成了血红素功能化的石墨烯纳米杂化材料(H-GNs)[21].这种新的纳米材料在水溶液中具有很好的稳定性,并且具有血红素和石墨烯的优良特质.石墨烯表面上附着的血红素使得H-GNs具有过氧化氢酶的性质,能够催化过氧化氢氧化过氧化氢酶底物的反应;H-GNs在水溶液中的分散符合2D的Schulze-Hardy规则,当电解质的浓度超过临界聚沉浓度后,H-GNs溶液就会由于电荷屏蔽效应发生聚集;单链DNA(ss-DNA)和双链DNA(ds-DNA)与H-GNs之间的亲和力不同,可以在最佳盐浓度下利用H-GNs的不同聚集状态区分ss-DNA和ds-DNA.

3 药物的靶向递送

石墨烯为单原子层结构,具有超大的比表面积,其两面都可以于对外嫁接其它分子,例如它可以通过共价、非共价作用与高分子及药物结合,因此拥有超高的药物负荷量.它可通过较强的物理吸附作用与芳香环类药物非共价结合,递送一些难溶性药物[3](图6),尤其是一些抗癌药,这对于大部分非水溶性药物的体内递送具有重要的意义.另外,氧化石墨烯为亲水性物质,具有较好的生物相容性.有关研究发现,在细胞水平氧化石墨烯是一种相当安全的材料,没有明显的细胞毒作用,因此氧化石墨烯作为药物靶向输送的载体最近受到科研人员的高度重视.

戴宏杰课题组首先研发了星状聚乙二醇(Polyethylene glycol, PEG)功能化的纳米级氧化石墨烯(NGO-PEG)[5],增强了氧化石墨烯在盐溶液和胞浆中的溶解性和稳定性.研究表明,只有当细胞在极高浓度的NGO-PEG溶液中时,其生存能力才会出现轻度下降.在此复合物的基础上,他们引入了B 细胞单克隆抗体(Rituxan)生成NGO-PEG-Rituxan,增强了靶向性,使其能特定作用于CD20+的癌细胞.NGO-PEG-Rituxan 溶液中通过π-π堆积作用将阿霉素负载到NGO上, 生成NGO-PEG-Rituxan/DOX复合物 .肿瘤细胞外的组织为酸性,NGO-PEG-Rituxan/DOX 在此酸性微环境中可缓慢释放出阿霉素,从而发挥抗癌作用.该方法利用了抗原抗体特异结合的原理,加强了阿霉素递送的靶向作用,提高了药物作用部位的选择性,具有非常重要的临床应用价值.

张智军研究组首先报道了将氧化石墨烯用于多种抗癌药的混合转运[22],从而增加了其抗癌活性,降低了癌细胞耐药性的产生.他们将功能化氧化石墨烯通过π-π 堆积和疏水作用, 依次与喜树碱(Camptothecin, CPT, DNA 拓扑异构酶Ι 抑制剂)、阿霉素(DOX, DNA 拓扑异构酶ΙΙ 抑制剂) 相互结合, 生成复合物.在肿瘤组织细胞外酸性微环境中,DOX 和CPT 转变为亲水性,溶于组织液中.复合物可通过受体介导的细胞内吞作用,将抗癌药转运至细胞内,从而发挥毒性作用.抗癌药的联合运用降低了癌细胞耐药性的产生,增强了药物的抗癌活性,提高了临床疗效,与单个药物的靶向转运相比,具有明显的优势.最近同一课题组研究了氧化石墨烯用于siRNA与化学药物贯序输运及其协同抗癌作用[24].他们将阳离子聚合物聚乙烯亚胺(PEI)与氧化石墨烯(GO)共价交联,制备出带正电的PEI-GO复合物,其可以通过静电作用将siRNA装载到PEI-GO上.研究表明,PEI-GO纳米载体输运对Bcl-2靶标的siRNA进入HeLa细胞后,产生的基因沉默效果明显高于PEI 25K,但细胞毒性却低于后者.在此基础上,他们进一步研究了该体系用于siRNA 和抗肿瘤药物阿霉素的贯序输运.结果发现,贯序输运对Bcl-2靶标的siRNA与阿霉素对肿瘤细胞的杀伤作用是对照组(scrambled-siRNA和阿霉素)的2.6倍,表现出明显的协同抗癌效应.

4 结语与展望

石墨烯及其衍生物由于其独特二维结构、优良的物理化学性能、制备方法多样化,成本低廉,适于规模化制备等特点,自2004年它被发现以来,在短短几年的时间内相关研究就取得了很大的进展.目前,石墨烯优缺点并存,如何大规模制备结构完整、尺寸和层数可控的高质量石墨烯依然是值得继续研究和探讨的课题.新的化学修饰方法、共价键合与非共价键合到石墨烯表面上的有机高分子及生物分子可控[24]石墨烯及其衍生物的作为独特的软物质的研究及开发还需要进一步深入研究.掺杂的石墨烯的制备和分子水平功能修饰,基于功能化的石墨烯在生物传感,新型核酸/药物输运体系以及在肿瘤等重大疾病诊断与治疗中更具有潜在的应用前景[25].总之,石墨烯其功能材料在生物医学的探索方兴未艾,是非常有实用价值的先进碳材料.

参考文献:

[1]LIU J Q, TAO L, YANG W R,et al. Synthesis,characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites[J]. Langmuir,2010, 26(12):10068-10075.

[2]LIU J Q, YANG W R, TAO L, et al. Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization[J]. J Polym Sci Pol Chem,2010,48(2):425-433.

[3]LIU Z, ROBINSON J T, SUN X M, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. J Am Chem Soc,2008,130(33):10876.

[4]YANG W R, RATINAC K R, RINGER S P, et al.Carbon nanomaterials in biosensors:should you use nanotubes or graphene[J]. Angewandte Chemie-International Edition,2010,49(12):2114-2138.

[5]SUN X M, LIU Z, WELSHER K, et al.Nano-Graphene oxide for cellular imaging and drug delivery[J]. Nano Res,2008,1(3):203-212.

[6]KROTO H W, HEATH J R, OBRIEN S C,et al.C-60 - Buckminsterfullerene[J]. Nature, 1985, 318(6042):162-163.

[7]IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991, 354(6348):56-58.

[8]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science,2004,306(5296):666-669.

[9]SUTTER P W, FLEGE J I, SUTTER E A.Epitaxial graphene on ruthenium[J]. Nat Mater ,2008, 7(5):406-411.

[10]REINA A, JIA X T, HO J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2009,9(1):30-35.

[11]Li X S, Cai W W, An J H, et al.Large-Area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312-1314.

[12]BERGER C, SONG Z M, LI X B, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,2006,312(5777):1191-1196.

[13]STANKOVICH S, DIKIN D A, PINER R D, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.

[14]LV W, TANG D M, HE Y B, YOU C H,et al. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage[J]. Acs Nano,2009,3(11):3730-3736.

[15]NOVOSELOV K S, JIANG D, SCHEDIN F,et al.Two-dimensional atomic crystals[J]. P Natl Acad Sci USA,2005,102(30):10451-10453.

[16]LI D, KANER R B.Materials science - Graphene-based materials[J]. Science,2008,320(5880):1170-1171.

[17]SCHEDIN F, GEIM A K, MOROZOV S V,et al.Detection of individual gas molecules adsorbed on graphene[J]. Nat Mater,2007,6(9):652-655.

[18]LU C H, YANG H H, ZHU C L,et al.A graphene platform for sensing biomolecules[J]. Angewandte Chemie-International Edition,2009,48(26):4785-4787.

[19]FENG L Z, ZHANG S A, LIU Z A. Graphene based gene transfection[J]. Nanoscale,2011,3(3):1252-1257.

[20]ZHOU L, CHENG R, TAO H Q, et al.Endosomal pH-activatable poly(ethylene oxide)-graft-doxorubicin prodrugs: synthesis, drug release, and biodistribution in tumor-bearing mice[J]. Biomacromolecules,2011,12(5):1460-1467.

[21]LIU H B, LIU Z, GUO Y B, et al.Emission and electrical switching properties of large-area CuTCNQ nanotube arrays[J]. Cryst Growth Des,2010,10(1):237-243.

[22]ZHANG L M, XIA J G, ZHAO Q H,et al.Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs[J]. Small,2010,6(4):537-544.

[23]ZHANG L M, LU Z X, ZHAO Q H, et al. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide[J]. Small,2011,7(4):460-464.

[24]LIU J Q, YANG W R, TAO L,et al.Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry,2010,48(2):425-433.

[25]FENG L Z, LIU Z A.Graphene in biomedicine: opportunities and challenges[J]. Nanomedicine-UK,2011,6(2):317-324.

收稿日期:2011-05-06.

第3篇:生物化学在医学中的应用范文

学校现在已发展为多学科的医学院校,虽然医学化学是普通基础课,但医学和理工等专业差别大、跨度大,专业人才培养要求也不同,应该进行相应的改革。目前,我校在医学和理工类等专业都采用医学化学同一本教材,在应用物理学、医学影像学、生物工程等专业开设了医学化学课程,学时在30~80学时不等,占3~4学分,理论和实验课的比例约为3∶1,课程基本都在大学一年级进行。从历年学生学习的情况看,生物类专业大部分学生能认真对待学习,但不知怎样去学;非生物类专业部分学生认为医学化学对自己的专业没什么用处;更有一些学生仅仅是应付学习,能通过考试拿到学分就行。近年来,随高校规模和新上专业的增加,怎样培养适应社会发展需要的人才,怎样让学生成材,也是各专业教师应有的责任和使命。笔者近年来在理工类专业的医学化学教学中进行了一些教学内容的改革探索,取得了积极的效果。

二、医学化学课程应包含的主要内容

近年来,随着各新兴交叉学科发展的需要,新的分支学科正不断涌现,化学各分支学科的研究内容也在不断扩充。如何在医学化学教学中,做到从化学学科内在知识结构的要求出发,将化学学科系统而又不失重点地传授给理工类专业的学生,确实是一个值得重视的首要问题。在几代化学教育家和广大教师多年的教学实践中,在各综合性大学目前的化学教学中,教师普遍认为,将化学学科以理论化学(结构化学与物理化学)、化合物的合成制备与性质(无机与有机化学)及化合物的测量与表征(分析化学)为主要线索来介绍化学知识是符合目前科技发展和经济发展的趋势和要求的。因此,大学医学化学的教学也应遵循这样的原则,也就是以化学原理、制备与性质、测量与表征为医学化学教学的主要内容。

三、医学化学的教学如何适应理工类等相关专业

医学化学在我校授课的专业主要有应用物理学、医学影像学、生物工程等专业。这些专业的医学化学教学与一般大学理工科的化学教学,无论内容和难度及要求都是不同的。如何做到既能系统地将化学学科的基础知识介绍给学生,又能考虑到各专业学生的培养目标和特殊要求,这应是大学医学化学教学的基本思路。不同专业人才培养要求不同,教学内容应因专业不同而在难度和重点方面有所不同。如结构化学、化学热力学和化学动力学是物理化学的主要内容,也是化学学科的理论基础和知识框架。过去在原先医学化学的教学中,一直都属于略讲或不讲的部分。也正是由于这种状态,使上述专业的学生对化学不感兴趣,实际上起了削弱化学学科重要性的作用。

1.应用物理学(医学物理学方向)学为主的应用型人才,对于该专业的医学化学理论教学内容,应遵循理论够用,应用为主的原则。在参照教学大纲的前提下,在《氧化还原反应与电极电势》一章增加了化学传感器的内容,这在医学诊断和环境检测中都有重要的应用;在《滴定分析法》一章中,增加部分仪器分析的内容,这部分内容涉及仪器的正常使用维护,是物理学的主要应用,对保证仪器灵敏度、准确度、选择性等指标非常重要,例如电化学分析与光谱分析中如何降低信噪比等等。《有机化学的对映异构》一章涉及物理学光学的应用,要重点讲解,其它内容一般了解即可。以下是本专业修订后的医学化学理论授课内容

2.医学影像学专业医学影像学专业是以培养面向医学理论与应用并重的理、工、医多学科结合的专业人才为目标,除了按医学化学的教学要求教学外,还涉及较多的物理学的理论知识,实际应用中又要使用各种现代先进诊断仪器。因此在教学中,第一要突出物理化学中动力学的内容。因影像专业要接触放射性同位素,要熟悉其物理化学变化规律。第二,无机化学教学内容中要突出配合物的内容,因涉及肿瘤病人的化疗使用的配合物类药物,如顺铂和卡铂类化疗药物。第三,影像诊断经常使用的造影剂大多是有机化合物,所以有机化学的内容重点应讲基本有机物的性质,主要是药物性和毒性方面的知识。第四,要增加分析化学的仪器分析内容。因为医学影像专业是以诊断为主的专业,常用磁共振、CT等大型先进仪器,因此学生应对现代分析手段有所了解﹑熟悉,才能更好地掌握仪器的正常使用和维护。以下是本专业修订后的医学化学理论授课内容,

四、结束语

第4篇:生物化学在医学中的应用范文

关键词: 医学化学 生物化学 基础医学

在大多数的文化中,最早的医学多是根据一些经验证明有效的物质进行治疗,比如一些植物(草药)、动物药和矿物药等。随着社会文明程度的不断提高,医学也随之发展,越来越多的科技融入医学研究和教学中,如生物医学工程、医学成像、纳米医学等。秦伯益院士指出:“我国医学科学研究目前存在四个误区:一是重视明显治病因素,忽视环境治病的潜在因素;二是重视治疗,轻视预防的成果;三是重视围观(如分子生物学),轻视宏观战略问题;四是重视躯体性疾病,对精神性疾病关切不够。”刘德培院士认为:“我国医学科技发展的战略转移有四点,其中两点是从重视诊治到重视预防,对生命全程保护;再有就是从重视机体向重环境、心理、社会因素与机体相互作用的结合研究转变。”因此,有必要对现行的医学教学开展必要的研究与探讨。

一、注重医学发展史教育,培养医学道德

医学史多是医学类院校的第一课,俗语说:良好的开端是成功的一半,因此,医学史的教学是必然。医学史,是又称医疗史或医药史,是历史学的一个分支,以疾病经验及其对应手段为研究对象。二十世纪初期的医学史,大多由医生所撰写,强调医学技术的进步与突破。近期的医学史,则强调病人的经验,以及不同时代或文化对身体和疾病认知的差异。期间共经历过三次卫生革命:第一次卫生革命以传染病、寄生虫病和地方病为主要防治对象,社会卫生策略主要是国家制定卫生措施,研究有效疫苗,推广广泛免疫接种计划,推行消、杀、灭等综合性卫生措施,使急、慢性传染病的发病率和死亡率大幅下降,平均期望寿命得以延长;第二次卫生革命则是以慢性非传染性疾病为主要防治对象,主要是心脑血管系统性疾病、恶性肿瘤、意外伤害、精神病等。社会卫生策略主要是发展早期诊断技术、增强治疗效果,并不断强化疾病的监测,提倡广大市民建立健康的生活行为方式,即不抽烟、不酗酒、不吸毒等,随之也提出了合理营养与体育锻炼等综合性的卫生措施,降低慢性非传染性疾病的发病率和死亡率。第三次卫生革命以提高生活质量,促进人类健康长寿为目标,社会卫生策略更加注重健康促进策略,且涵盖了决策指挥系统,新型公共卫生体系建设,预防控制系统,执法监督系统,应急预警系统,医疗救治系统和后勤保障补给系统等,以合力保障社会群众的生命健康。

后医学时代(WHO言论)认为:“未来死亡率的下降是大部分靠非卫生部门的努力来实现的,防治心血管病、癌症等需要依靠社会行为措施,并树立医师是改变人类行为的工程师的概念,从而实现人人享有卫生保健(HFA),保障人人健康。”

二、重视基础性课程教育

医学教学与工作中常使用到分析化学、生物化学、有机化学等基础性学科,学习效果直接影响到学生日后工作的效果。医用化学作为面向非化学专业医学类学生的公共基础课,对于提高学生的综合素质有着重要的作用。这就需要教师首先要备好课,刻苦钻研教材,精心设计教学过程,使抽象、难懂的知识变得浅显易懂、生动有趣。教师在备课时应多参考些相关教材,并进行分析比较、归纳总结,避免片面偏颇。在解释问题时,注重对知识的条理化、将文字转化为生动的语言,便于学生理解和记忆。如:物质的结构与其化学性质有着必然的联系,从其化学键的性质及其官能团的性质推测其可能发生的化学反应。又如:能发生水解反应的物质有:氯代烃、酯(油脂)、二糖、蛋白质(肽)、盐等;能被氧化的物质多为含有碳碳双键或碳碳三键的不饱和化合物、苯的同系物、醇、醛、酚等,大多数有机物都可以燃烧,燃烧都是被氧气氧化;能使蛋白质变性的物质有强酸、强碱、重金属盐、甲醛、苯酚、双氧水、碘酒和三氯乙酸等物质。

教师在讲课过程中,应采取精讲与粗讲互搭的方式,突出重点。精讲部分要求学生必须掌握,讲课时教师的思路一定要清晰,如较难理解的共轭效应,应采取由浅入深的方式,从回顾1,3-共轭二烯开始,并讲述共轭双键的电子云分布及轨道重叠情况,由于形成共轭二电子离域,键长、电子云密度分布平均化,电子效应导致其能发生1,4-加成,由1,3-共轭二烯再引申到含较多共轭键的卤代烯分子,讲共轭效应对其的影响,之后讲含有羰基的共轭体系,电子云密度的改变按交替方式传递至共轭链的另一端。最后讲苯环上共轭效应的传递情况,而不是简单地只讲述卤代烃的共轭。

三、培养关注医学化学新动态的热情

治学大师朱熹说:“无一事而不学,无一时而不学,无一处而不学,成功之路也。”罗曼·罗兰说:“成年人慢慢被时代淘汰了,最大原因不是年龄的增长,而是学习热忱的减退。”同志也曾语重心长地说:“情况是在不断地变化,要使自己的思想适应新的情况,就得学习。”学习是人们建功立业,实现远大理想的有效途径,也是一个人获得成功的公开秘诀。郑板桥作画“四十年来画竹枝,日间挥写夜间思;冗繁削尽留青瘦,画到生时是熟时”。正是这种日复一日、年复一年的勤学苦练,才使他的画艺达到炉火纯青的地步。对医学化学发展动态的关注是保持学习热情的重要方式之一,例如生物化学是运用化学的理论和方法研究生命物质的边缘学科。其任务主要是了解生物的化学组成、结构及生命过程中各种化学变化。从早期对生物总体组成的研究,进展到对各种组织和细胞成分的精确分析。目前,正在运用诸如光谱分析、同位素标记、X射线衍射、电子显微镜,以及其他物理学、化学技术,对重要的生物大分子(如蛋白质、核酸等)进行分析,以期说明这些生物大分子的多种多样的功能与它们特定的结构关系。近年来,酶的结构与功能的关系、反应动力学及作用机制、酶活性的调节控制等是酶学研究的基本内容是生物化学的热点研究问题。再例如对一些常见病和严重危害人类健康的疾病的生化问题进行研究,有助于进行预防、诊断和治疗。如血清中肌酸激酶同工酶的电泳图谱用于诊断冠心病、转氨酶用于肝病诊断、淀粉酶用于胰腺炎诊断等。在治疗方面,磺胺药物的发现开辟了利用抗代谢物作为化疗药物的新领域,如5-氟尿嘧啶用于治疗肿瘤。青霉素的发现开创了抗生素化疗药物的新时代,再加上各种疫苗的普遍应用,使很多严重危害人类健康的传染病得到控制或基本被消灭。生物化学的理论和方法与临床实践的结合,产生了医学生化的许多领域,如:研究生理功能失调与代谢紊乱的病理生物化学,以酶的活性、激素的作用与代谢途径为中心的生化药理学,与器官移植和疫苗研制有关的免疫生化等。

四、重视复习环节

第5篇:生物化学在医学中的应用范文

关键词:案例教学法;医学生物化学;案例设计

21世纪是探索和发现的时期,医学生物化学作为生命科学的重点学科之一,能够帮助人类了解自身未来发展的趋势。同时,它也是连接基础与临床医学的桥梁,更是生命科学的基础。而案例教学法的应用能够使学生进一步了解医学生物化学,进而对生命产生敬畏感。

一、案例教学法的概念

案例教学法自从被教育学家研究并应用之后,一直保持长盛不衰的趋势,在医学生物化学教学中具有不可替代的实效价值。它是指教师根据既定的教学目标和教学方案,以讲解实际生活中案例的方式,组织学生进行学习、研究、锻炼能力的一种教学方法。案例教学法刚应用到课堂教学中,就引发了学生极大的学习热潮。因为它给学生创设了一个良好的教学实践情景,将想象中的理论变成肉眼可见的实操型教学。它把最真实、最典型的问题展现在学生面前,让学生根据案例去讨论、交流和研究。这种方法能够有效培养学生的综合能力。医学生物化学的案例来源于实践,对于学生的学习具有很好的指导作用,这就大大消除了理论与实践之间的隔膜,从而让学生能够更好、更快地适应医学实操工作。

二、案例教学法在医学生物化学教学中的应用

(一)案例设计

案例教学法对于医学生物化学的教学非常重要,选择适合的案例可以提高学生的学习效率。因此,案例的选择要具有典型性和启发性,要能够最大程度地体现课本所反映的问题,而且还要为学生留有足够的空间让学生进行发挥与讨论,并做到深入浅出。在选择适合、典型案例的同时,教师还要设计一些跟课堂内容相关、具有讨论意义和代表性问题,帮助学生依托课本知识,适时拓展知识面,加深学生对于医学生物化学相关知识的理解,让学生在生动的案例中轻松掌握临床知识,提高课堂的有效性。

(二)教学安排

合理安排案例教学就是以先进的教学理念搭配恰当的教学方式,将案例教学法融合课堂教学实践中。教师可以在课堂开始时,先引入案例,再提出问题,引导学生进行思考。然后给学生一定的时间,让他们通过各种途径寻找问题的答案。接下来,教师组织学生先进行分组讨论,再进行细化分析,最后,教师根据学生讨论过程中出现的各种问题进行解答。这种良好的课堂互动氛围和融洽的讨论情境都能提高学生的学习兴趣和学习积极性,从而使学生对于课程知识的掌握更加牢固。

(三)教学实践

教师需转变课堂主导者的身份,扮演课堂引领者的角色,以突出学生的课堂主体性。作为课堂活动的引领者,教师需要充分调动课堂的气氛,为学生提供一个轻松、活跃的沟通交流平台,还要不断挖掘学生的学习潜力,让学生在交流讨论中提高自主学习能力。学生只要具有质疑精神,就能够发觉案例的优缺点,从而不断完善自己,这也是社会对新时代大学生的一个重点要求。现在大多数高校教学都以大班授课为主,给案例教学法的实施带来了一定的挑战,所以,这更需要教师去积极研究,努力寻找一个最优的解决方案。

(四)教学反思

任何一种教学方式在实践教学中都不可能完美地实现想要的教学效果。一个方法的使用也应该因人而异。教师上课时面对的是一群具有不同个性的个体,他们的能力水平都不尽相同。教师应该在课上认真观察每个学生对于学习内容的反映,在课后进行积极地询问并反思,做到“一日三省”,针对存在的问题,分析其原因,为以后挑选案例提供更好的依据,同时也要对效果好的案例进行分析,分析其优势,以便为后期寻找优秀案例提供参考。

三、结语

随着我国社会体制改革的逐渐深化,医学生物化学的教学方法也应该与时俱进,走在社会的前端,但从目前的教学方式来看,其改革的步伐没有跟上社会变革的步伐,呈现明显落后的趋势,且教学效果并不明显。因此,高校医学生物化学应该加快改革创新的步伐,积极应用案例教学法,完善课程改革过程中出现的一系列问题,从而进一步推进我国医学生物化学教育的发展。

参考文献:

[1]张俊河,董卫华,王芳,等.案例教学法在医学生物化学教学中的应用[J].山西医科大学学报(基础医学教育版),2010(2):139-142.

[2]董卫华,王天云,谷兆侠,等.案例教学法在医学生物化学实验教学中的应用[J].山西医科大学学报(基础医学教育版),2009(2):209-210.

第6篇:生物化学在医学中的应用范文

关键词:动物医学;人才培养;应用型

我国兽医高等教育承担着为兽医行业培养高层次专门人才的重要职能,其所培养的动物医学专业人才必须要与我国兽医行业的发展要求相适应。随着我国经济社会发展和国际化进程的加快,兽医行业对动物医学专业人才培养提出了新的要求。动物医学专业是应用性很强的专业,与畜牧业发展和人民群众生活水平的提高息息相关,如何抓住动物医学专业的特点和人才培养的关键环节,培养适应我国兽医行业发展要求,具有较强实践能力和创新精神的应用型动物医学专业人才,已成为我国兽医高等教育亟需关注和解决的重要课题。

一、科学定位动物医学专业人才培养目标

长期以来,我国兽医行业是为畜牧业服务的,而在大多数国家兽医行业是为人畜健康服务的,其在防控动物疫病、保护动物健康和公共卫生安全等方面占据着十分重要的地位和作用。由此可见,兽医工作是一项承担着重要的社会责任、社会通用性强、关系公共利益的专业技术工作。2008年11月26日,农业部颁布《执业兽医管理办法》,对从事兽医专业技术工作实行职业准入控制。该办法借鉴国外执业兽医管理经验,规范执业兽医管理,其中最重要的一条就是实行执业兽医资格考试制度。2009年,农业部首次在吉林、河南、广西、宁夏和重庆5省市进行执业兽医资格考试试点,2010年全国执业兽医资格考试在31个省、市、自治区同时举行,这标志着我国执业兽医资格考试制度已进入实施阶段。在我国大力推进兽医管理体制改革的时代背景下,高校动物医学专业人才培养工作必须主动调整,积极与我国兽医管理体制改革相适应,为促进我国兽医行业快速发展培养一大批高素质应用型动物医学专业人才。

在美国等一些发达国家,兽医高等教育的人才培养目标非常明确,那就是培养临床经验丰富的兽医师,其培养规格是通过兽医资格考试来控制的,兽医教育在本质上属于“精英教育+职业教育”,学生报考兽医学院需先获得普通大学相关专业的学士学位或先上1-2年预科。在我国,兽医高等教育与美国等一些发达国家相比具有很大区别,动物医学专业还是一个“冷门专业”,考生报考的热情不高,学生毕业后除了一部分直接从事兽医工作外,还有相当一部分毕业生继续考研深造,这在“985”、“211”和一些省属重点高校更加突出,在这些高校学生考研深造的比例甚至超过了就业的比例,同时学生的就业取向呈现多元化,这就给动物医学专业人才培养工作带来了一定的难度。

我国《执业兽医管理办法》颁布实施后,执业兽医资格考试一方面既是对从事兽医专业技术工作的准入控制,另一方面也是对我国动物医学专业人才培养规格的集中检验,它对培养应用型动物医学专业人才必将起到很好的引导和推动作用。培养应用型人才应成为动物医学专业始终必须坚持的人才培养目标,学生今后无论是从事动物诊疗、动物卫生执法还是科研等相关工作,都必须具有较强的实践能力。

二、精心构建动物医学专业人才培养课程体系

课程体系建设是关系到人才培养质量的关键环节,它涉及到教学思想的转变、教学内容的改革、教学方法的运用、教学手段的更新、师资队伍的优化、优质教材的建设等多个方面。我国执业兽医资格考试实施后,兽医资格准入就有了门槛,《执业兽医管理办法》规定“具有兽医、畜牧兽医、中兽医(民族兽医)或者水产养殖专业大学专科以上学历的人员,可以参加执业兽医资格考试”,虽然这个门槛较低,在兽医界还存在争议,但这毕竟对兽医资格准入提出了明确的要求。从2009年执业兽医资格考试试点和2010年执业兽医资格考试全国性统考的合格率来看,我们不难发现,执业兽医师通过率较低,其中2009年仅为6.4%,2010年为13.12%,平均分数也不高,这一方面说明了考生对执业兽医资格考试的题型和要求还不适应,另一方面也说明了我国兽医及相关专业的教育质量参差不齐,考生对兽医知识、专业技能的掌握还不扎实,相当一部分报考人员还未达到执业兽医的从业标准。对此,高校必须从兽医行业对动物医学专业人才培养提出的新要求出发,构建完善的人才培养课程体系。

1.要从整体上把握课程体系建设。在我国,高校对单门课程建设的关注度往往超过了对课程体系整体建设的关注度。从培养高素质应用型动物医学专业人才的目标出发,必须从整体上把握课程体系建设,构建课程结构科学合理、主干课程脉络清晰、选修课程丰富多彩、课程质量监控有力的课程体系。课程体系建设,必须要明确各门课程在专业教学中的任务、地位、作用及相互关系;要反映本学科最新的科技成果,及时更新陈旧、过时的教学内容;要满足人才培养的不同需求,给予学生充分的自主学习空间。

2.要完善人才培养方案,改造传统课程。要根据兽医行业承担兽医公共卫生社会职能的需要,开设“共患病防控”、“动物性食品安全”等相应的课程;要根据兽医主要工作对象从役用动物、食品动物、其它经济动物向伴侣动物转移的现状,开设“小动物疾病学”、“兽医外科与外科手术学”、“兽医影像诊断学”等课程;要根据兽医行业服务对象从过去侧重于对个体病例的诊疗转变为对动物群发病的防制的特征,开设“兽医流行病学”、“动物营养代谢病与中毒病”等课程。

3.要拓展教学时空,构建网络教学平台。网络教学平台的应用在发达国家已非常广泛。近年来,国内高等院校对网络教学平台的建设给予了高度重视,但是受传统教学方式的影响和硬件条件的制约,目前网络教学平台的利用率还不高。网络教学平台是对课堂教学的重要补充,加强网络教学平台建设,有利于放大各级精品课程建设的示范和辐射作用,同时将改变师生传统的“教”与“学”的方式,赋予学生更多的学习自,有利于培养学生良好的学习兴趣和学习能力。

4.要加强选课指导,完善学分制。学分制的实施对于促进学生个性发展、调动学生的学习积极性发挥着重要作用。但在,一些高校在实施学分制过程中存在着学生选课的自由度较小、选修课质量不高、学生选课较为盲目等问题。对此,除了要优化课程资源、提升课程质量外,还要充分发挥教师的主导作用,加强对学生选课的指导,克服学生选课的盲目性,提高选课的科学性,引导学生构建完善的动物医学专业知识体系。

三、全面优化动物医学专业人才培养实践环节

具有较强的实践动手能力是动物医学专业人才培养的重要特征。然而,实践动手能力不强已成为当前一些高校动物医学专业人才培养存在的主要问题。受人才培养目标模糊、客观条件制约、就业压力较大等因素的影响,我国高校“重理论、轻实践”、“重学术、轻实用”的现象比较普遍。一些学校只注重学生的理论教育,而忽视了学生实践动手能力的培养;一些学校因实践教学经费投入不足,部分实践性教学环节难以开展;一些学生只注重学历的提升,热衷于考研,而忽视了兽医技能的提高;一些学生专业思想不巩固,就业取向模糊,缺乏足够的夯实兽医技能的热情。这就造成了学生的实践动手能力与生产实践的要求相距甚远。

动物医学专业人才培养一般要经历基础教学、临床见习、综合强化、实践提升四个阶段,而实践环节则是贯穿其中的主线。实践环节主要包含实验教学、临床见习、科研训练、毕业论文、生产实习等,其覆盖了大学四年或五年(我国部分高校动物医学专业学制为五年)全过程。全面优化动物医学专业人才培养实践环节,必须要从以下几个方面入手:

1.要提高实践教学环节在人才培养方案中所占的比重。实践教学是动物医学专业教学的重要组成部分。实践教学包含实验教学和教学实习两个部分,其中实验教学分为课程实验和实验课程,教学实习包括课程实习、生产实习、临床见习、毕业实习等。根据应用型动物医学专业人才培养要求,高校应坚持走与经济社会发展紧密结合、与生产实践紧密结合、与服务“三农”紧密结合的道路,提高实践教学环节在人才培养方案中所占的比重,保证实践教学学时,加强实践教学考核,培养具有较强实践动手能力的应用型动物医学专业人才。

2.要加强实验、实训场所和校内、校外实习基地建设。实践教学需要优良的实践教学条件(含大量实验动物)作为保证,但一些高校实践教学条件的制约和经费投入的不足影响了实践教学的开展。在兽医临床实践环节,需要有稳定的校内、外实习基地,西方发达国家兽医学院一般都有设施完备的动物医院和一定数量的校外基地,而我国高校附属动物医院大多条件简陋,一些校外实习基地由于体制改革和经营管理等方面的原因,已不能很好地满足学生的临床实践需要,因此,必须下大力气加强教学实习基地建设,改善临床实践条件。

3.要将提升学生的实践创新能力作为重点。学生创新精神和创新能力需要在实践中培养。在教学方式上,要积极推进研究性教学,逐步改变以往“以知识为中心”的灌输式教学方式,更多地采用“以问题为中心”的研究性教学方式,引导学生在科学研究、生产实习、社会实践中提高发现问题、研究问题、解决问题的能力。在实验教学中,除了开设演示性、验证性实验外,还要开设综合性、设计性实验,让学生自己动手进行实验设计、准备、操作,以及实验结果的记录、处理、统计、分析,直至最后撰写出实验报告或研究论文。在制度建设上,要依托重点学科、重点实验室、工程研究中心等教学科研基地,建立和完善大学生科研训练体系和实验室开放制度,通过设立大学生科研基金、举办大学生课外科技作品竞赛等形式,引导学生尽早进入实验室,在科技活动中训练提升学生的实践能力和创新能力。

第7篇:生物化学在医学中的应用范文

1以中医之长补西医之短

中医的基本理论受惠于中国古代“天人相应”思想,逐渐形成了整体观、平衡论和“中和”的文化观念。在“天人合一”理念指导下,中医学认为,人体是一个有机的整体,既重视脏腑组织功能及其内在的联系,也强调人体自身与环境的统一与和谐,并从自然界的变化过程中来探索生命活动和疾病发生发展与演变规律。因此,中医学始终强调运用人体的整体和动态平衡思维,来认识生、长、壮、老、已及机体发生疾病后的一系列病理变化,从而掌控预测疾病的发展脉络与演变趋势,并确定相应的诊治原则。临床和实验研究表明,中医的整体治疗对肿瘤的影响,不仅可增强和调整人体免疫力,抑制癌细胞诱导分化,促进癌细胞凋亡和癌基因与抑癌基因的相互变化与协调,而且更促使人体的整体功能恢复以抑制肿瘤的转移与复发。中医的整体观正是西医所忽略的,如西医的肿瘤分期只考虑局部的变化,很少重视机体整体的评估;西医的支柱疗法也是只重“攻”,而很少考虑机体自身保护治疗的“补”;微创手术仍停留于解剖层面上,很少见到以保护机体功能为目的的“生理微创”。中医的“扶正”理念不能被西医所接受,然而西医的现代化手段也正是中医能否早日进入医学主流世界所必须的条件之一,所以中西医结合必将使肿瘤防治产生革命性的突破与发展,对世界肿瘤的防治做出重大贡献。中医把握的是个性和整体,它通过辨证和用药加减解决了个体间的差异,而西医把握的是共性的整体,依靠的理论是抽象产物,是事物的共性和一般,但中西医共同揭示的是个体生命的不同层次的规律,二者都把健康与疾病防治作为共同努力的终极目标。客观地比较中西医学,方能正确地认识中西两种医学在学术上的差异和统一,中医应当学习和利用西医现代科学技术完善自己的基础理论和技能方法,而西医在宏观调控与整体观和平衡论的认识方面也必须加强与中医互补,从而开创一种中西医结合的新医学模式。

2促进中西医结合向转化医学聚焦

转化医学是近年来国际健康领域出现的新概念,是一种临床与基础医学互为动力的双赢理念,对促进医学发展有着重要意义。我们曾提出临床与基础医学密切结合是肿瘤防治的重要举措[2]48,之后有学者进一步阐述了转化医学的概念,认为应该从临床工作中发现、提出问题并与基础合作,并在临床工作中验收其成果,以提高医学总体水平[4]。转化医学可以使临床与基础彼此直接联系,相互快速转化,推进医学发展,使患者直接受益于科学技术的发展。

2.1中医“扶正祛邪”理念是抗肿瘤治疗的双重宝剑”

癌症的发生除细胞本身的基因突变外尚存在诸多外在因素,如免疫系统的监视效应不利可导致肿瘤持续生长,而应用中医“扶正祛邪”理念施以攻补兼施则可抑制癌细胞生长。再如一类广泛存在于人体免疫细胞上的具有生物学功能的蛋白分子,有一种蛋白可以与其存在于淋巴细胞表面的受体以“锁阴结合”的方式相互配接,能激活杀伤肿瘤的淋巴细胞,削弱抑制杀伤肿瘤,二者协同可有效地发挥抗肿瘤作用,这一认识正是取自于中医学扶正与祛邪的治疗理念。

2.2中西医结合是向转化医学转型的重要体现

健脾法治疗对荷瘤脾虚动物的效验研究显示,脾虚型鼠移植肝腹水癌模型(HAC)后,应用健脾类药物组与对照组比较有显著差异,药物组的肿瘤潜伏期延长,发展减慢,瘤体缩小,宿主全身状态良好,生存期延长,癌细胞分裂像减少,细胞动力学的分期明显下降,对宿主免疫反应可见T细胞活化、NK细胞数值升高;在与化疗药物环磷酰胺综合应用后,可见瘤体加速缩小,NK细胞明显激活[6]613。此外,活血化瘀治疗的抗肿瘤作用也应立足于中西医结合基点上,如川芎的有效成分川芎嗪可明显抑制B16-F10黑色素瘤的人工肺转移;赤芍、丹参与小量化疗药物合用可明显减少肿瘤肺转移,但单用活血化瘀药则有促进肿瘤转移作用[6]619,如此更验证了应用中西医结合治疗方法的显效性。

2.3加大力度促进抗癌中药发展

第8篇:生物化学在医学中的应用范文

关键词:医药品;生产;使用;环境保护;绿色药物化学

中图分类号:R954 文献标识码:C文章编号:1672-979X(2007)07-0059-04

Management of Manufacture and Application of Pharmaceutical Product from Perspective of Environmental Protection

DU Fu-qiang1, CAO Guang-mei2, 1, FANG Yu-chen1

(1. Shandong Bausch &Lomb Freda Phar. Co., Ltd.,Jinan 250014, China; 2. School of Pharmaceutical Science, Shandong University,Jinan 250012, China)

Abstract:Pharmaceuticals and pharmaceutically active metabolites have been increasingly detected in field samples. In order to abate and control this emerging class of environmental pollutants, it is of great significance to effectively regulate and manage the manufacture and application of pharmaceuticals. From the aspects of pharmaceutical green chemistry and corresponding green technologies, reasonable application of pharmaceuticals, treatment of pharmaceutical contaminants and so on, this paper reviews effective principles and ways for the management, application and treatment of pharmaceutical product.

Key words:pharmaceutical product; manufacture; application; environmental protection;pharmaceutical green chemistry

由于医药品的大量生产、使用和排放,在河流、湖泊、地下水等环境水体中不断监测到医药类污染物。现已报道的一系列监测结果表明[1,2],人用和兽用药物及其代谢产物正成为一类新的环境污染物。这类污染物在环境中的主要释放途径有,制药厂污水和废渣的排放,医院、家庭过期药物和医用物品的弃置,药物经人和动物的代谢排出,兽禽养殖、水产养殖中含药物变质饲料和废水的排放。为控制和消减这类新的环境污染物,必须对医药品的生产和使用进行有效引导与管理,采用从源头预防污染的措施,在药物生产过程中减少或消除污染,合理使用医药品,减轻对人类健康和环境的危害。

关于医药品的清洁生产、合理使用、废弃处理和制药企业的绿色管理等方面,已有许多文献报道,医药和环境领域也分别开展了一些相关的研究[3]。现从环境保护的角度,就绿色药物化学和绿色制药技术、医药品的合理使用、医药类污染物的处理等方面,对医药品的生产、使用和处理过程中的有效管理原则和措施作一介绍。

1绿色药物化学和绿色制药技术

1.1绿色药物化学和绿色制药技术的定义

绿色药物化学是绿色化学和药物化学的重要交叉,是当今国际药物化学科学研究的前沿。它是以药物化学为基础,将绿色化学的基本原则引入药物的开发、合成和优化,以及天然药物的提取、分离和分析等过程,尽量预防环境污染,减轻环境压力,同时保证整个过程的最大效率和产品的最大药效[4]。美国化学会提出的绿色化学12项原则[5],包括了绿色化学各个方面的内容,是对绿色化学最权威的解释和说明。其中大多数原则直接适用于绿色药物化学,只有少数原则不适用,如设计可降解材料。

绿色制药技术是在绿色药物化学基础上发展形成的技术,或将绿色化学的技术应用于制药工业。其特征是,它所考虑的药品生产路线与一般的传统生产路线不同,它把治理污染作为设计、筛选药品生产工艺的首要条件,研究和发展无害化清洁工艺,推行清洁生产[6]。理想的绿色制药技术应通过发展高效、合理、无污染利用资源的绿色化学新原理,以加大原料的原子利用率,减少或消除对环境有害的副产物,溶剂和试剂等回收循环再用为目标,利用环境友好的先进工艺技术,生产出对人类健康和环境更安全的医药产品。

1.2制药工业中的绿色化学技术

制药工业是关系到人健康的朝阳产业,绿色化学技术的引入和应用,不仅大大促进了绿色制药的发展,而且明显减少了有毒有害物质的排放,有助于实现制药工业的生态循环及药物生产的清洁化。这些绿色技术中主要的前沿科学技术是催化化学、不对称合成、组合化学、酶化学、微波化学、环境友好介质中的合成以及计算机辅助的绿色化学设计等;主要的前沿工程技术是反应精馏、分子蒸馏、双水相提取、超临界提取、熔融结晶、有机电合成和绿色制药工业设计技术等[6]。

制药工业中绿色化学技术充分显示了优异性。这些技术应用于化学制药工业,改革了化学制药中一些产品的传统工艺,提高反应收率,或采用不对称合成得到光学活性物质,使原材料得到较充分的转化,提高原子经济性,并且减少有毒有害物质排放量以达到零排放目的,实现绿色化。例如,生物催化是制备手性药物的一种很好的方法,提高了采用其它手性技术生产的单异构体化合物的纯度,它与化学催化(特别是一些重金属催化剂)相比,反应条件温和,对环境的污染很小[7]。再如利用水溶性均相络合催化,不仅具有催化活性高、选择性好等优点,更重要的是反应以水作为溶剂,安全、方便、易于分离,而且可避免生产过程中大量有机溶剂挥发对环境的污染。

制药工业中绿色工艺还应包括生产更多质量可靠,疗效确切,性能优良,使用方便的药物制剂。药物剂型是药物存在和给入机体的形式,其质量直接关系到治病救人的速度和质量。从环境保护方面考虑,要尽量采用环保安全的辅料、药物载体、包装材料等,以开发出高效、低毒、可控和使用方便的新剂型。此外,应适当延长药物制剂的保质期,以避免过期药物较早地进入环境而造成水体污染等。

1.3合理开发新的天然药物

天然药物是指从植物、动物和微生物等天然资源中开发出来的药物,是药物的重要组成部分。天然药物在广义上包含了中药,但与传统中药和西药相比更具特色。天然药物的来源广泛,可再生,其制剂安全高效低毒。我国具有数千年中医中药和民间医药的宝贵经验且天然资源丰富,开发和利用天然药物是我们独特的优势,天然药物是我国新药研发的重点。从环境保护的角度考虑,目前开发天然药物,应合理利用野生药用动植物资源,以切实保护生态环境。此外,天然药物的提取、分离和分析技术亟待提高。二氧化碳超临界提取技术环保经济,且不会给产品造成污染,是一种值得推广的提取分离技术。天然药物的生物有效成分的定性定量,需要更多的引入现代分析手段。原位分析技术既可以减少分析品暴露或释放到环境中的危险,又可提高分析效率,减少分析成本,是值得引入的分析技术[4]。

2对制药企业实施绿色管理

绿色管理是21世纪一种全新的管理理念,其内涵是以可持续发展思想为指导,以消除和减少组织的行为对生态环境的影响为前提,以满足消费者的需要为中心,通过生产、营销、理财等为实现经济效益、社会效益、生态效益的协调统一而进行的全过程、全员、全面的管理活动[8]。目前,企业绿色管理衍生出许多新的概念和模式,如绿色供应链管理、绿色物流管理、绿色企业文化管理和绿色经营战略管理等。这些管理模式已在国内各个行业不断地深入应用,制药行业关系到人民健康,制药企业必须实施绿色管理。

对制药企业实施绿色管理,除了推行清洁生产、实施ISO14001认证,重要的是树立企业绿色价值观,并将这种理念贯穿到制药企业的每个部门、每个活动环节,以形成绿色企业文化。构建企业绿色价值观,需要制药企业全面实施绿色管理模式,制定绿色企业战略,确定绿色发展规划;打造绿色供应链,实行从供应商到最终客户的全程绿色管理,运用绿色制药技术,推行清洁生产;开展绿色营销,树立良好的绿色形象[9]。

总之,制药企业实施绿色管理是一个长期、连续的系统工程,不仅需要企业内部每个部门、领导、员工的通力合作,更需要医药原料供应的绿色化,绿色制药技术的研发与应用,以及医药品的绿色营销、合理使用与安全回收处理等。

3医药品的合理使用与回收

3.1减少滥用医药品

医药类污染物在环境水体中大量存在,致使环境菌群抗药性增加,这与抗生素等医药品的滥用不无关系[10]。医药品的大量不合理使用不仅增加了药物滥用者对机会性感染病原体的易感性,严重影响人类健康,而且增加了医药品作为环境污染物,进入水体、土壤等自然基质的几率。目前,国内外滥用抗生素的情况严重,美国每天的处方中,有1.5亿张是抗生素,其中50%是不必要的;我国住院患者的抗生素使用率高达80%,其中广谱抗生素和联合使用抗生素达58%,远远高于30%的国际水平[11]。在畜牧水产养殖上,大量或过量使用抗生素和激素类药物,易使养殖区附近地域或水域遭受污染。环境监测的报道中,抗生素、激素、消炎药是经常检测到的医药类污染物。为控制和消减环境中医药品的浓度水平,必须减少并遏止医药品的滥用。

控制医药品的滥用,需要全社会的通力合作。首先,必须制订减少药物滥用的相关制度,并加强宣传教育,充分认识药物滥用与药物进入环境的危害。其次,医疗卫生系统要改变不合理的给药处方,提高医药品使用的有效性;特别要避免抗生素的滥用,减少产生抗生素耐药性的机会。此外,要合理使用兽药、渔药,完善动物性食品安全法律和标准体系,推广使用高效、低毒、无害、无残留兽药,严格规定和遵守兽药的使用规定,以减少药物残留及其进入环境的可能性。

3.2过期失效药品的回收

家庭备药已成为许多家庭的习惯,药品储存品种、数量均在递增[12];但一些过期和保管不当失效的医药品被大量存放或随意丢弃,带来巨大的浪费和潜在的隐患。药品过期后,不仅可能失去原有的治疗作用,而且可能因内在质量等发生改变,产生对人体有害的物质,损害健康。随意丢弃过期失效药物会造成环境污染,也会危害人体健康。直接暴露在自然环境下的废弃药品,特别是抗生素类药品,会对水源造成污染,也容易使一些病菌产生抗药性。大量药品的失效也造成了资源的浪费[13]。总之,过期药品造成用药安全、环境污染和资源浪费等问题,而目前我国对过期药品的控制方法尚不完善。必须采取有效措施,建立过期药品管理机制,实现对过期药品的全面控制,从而降低过期药品的产生数量,减少其潜在危害。

控制与管理过期失效药品,首先应提倡医药品的绿色消费,引导家庭合理贮药,从源头上减少过期药品的数量。目前一些不合法的医药品促销使消费者陷入“购药-过期-再购药”的怪圈,对此应加强法律监管,并引导消费者合理消费,避免“盲目”购药和“囤积”药物。

回收和处理过期失效药品,还应建立长效回收机制,安全处理过期医药品。有效回收可避免家庭过期医药品的随意丢弃,减少药物进入环境的可能性;安全处理是避免药物因销毁处理不当而引发二次环境污染。虽然,近年企业和药店进行了较多的有偿回收、“以旧换新”等活动,但过期药品的回收缺乏长效机制[14]。同时,对回收的药品,现有的处理方法一般是直接的露天焚烧与填埋,这势必危害环境;应采用专业的环保销毁设施,以彻底转化特殊性质的药物为无害的气体、残渣等。

医药企业、医院、药店还应积极运用管理学的控制理论,综合采用前馈控制、同期控制和反馈控制,对医药品的生产和销售进行调节,以实现对过期药品的全面控制[13]。例如,药品生产企业通过调研等方式,较准确地预测市场需求,避免过量生产,从而在药品出厂时就降低药品过期的可能性。

4医药类污染物的处理

含有医药类污染物的废水主要有医药生产废水、医院废水、居民生活污水以及畜牧水产养殖废水。制药废水一般浓度高、毒性大、色度深和含盐量高,特别是生化性很差,属难处理的工业废水[15]。现行废水的处理工艺中,以生物法为主[16]。但在污水处理过程中,某些药物不能完全被生物降解,其中疏水性的化合物可能富集于污泥,污水处理厂的出水也会含有部分药物,以至环境中医药类污染物大量存在与检出。为减少和控制医药污染物向环境的输入,必须开发高级氧化技术,或者发展绿色水处理技术用于医药废水的处理。

水处理中的绿色技术是指先进、无毒和环保无污染的高级氧化技术及其他先进技术,如电催化氧化法、超临界水氧化法、超声波降解技术及膜处理技术等。在现行处理工艺中,应开发结合多种技术与生物法的组合工艺,发展现实可行的绿色技术。对于医药品生产废水和废渣的绿色化处理,文献多有报道。例如应用高级氧化技术-生物法处理抗生素废水时,高级氧化技术能首先破坏或降解抗生素活性,使其中难于生物降解的物质转化为易于生物降解的小分子物质,即消除抗生素对微生物的抑制作用,提高废水的可生化性,后续生物处理难度将大大减小[17]。理想的绿色技术是零排污技术,代表了21世纪水处理技术的发展方向[18]。在制药企业和水处理厂推广应用绿色水处理技术,可以有效地减少医药类污染物向自然水体等环境基质中的输入,也是医药品的生产使用管理中的重要辅助内容。

5结论与展望

从环境保护角度考虑医药品的生产使用管理内容繁多,但归纳起来,医药生产过程中绿色制药技术的应用,绿色天然药物的开发,绿色管理理念的实施,是从源头上控制、消减或杜绝医药类污染物输入环境;医药品使用时,制止药物滥用,并有效减少医药品的过期失效,是在医药品的流通使用过程中对医药产品的绿色化管理,以降低此类污染物进入环境的几率;开发绿色水处理技术和工艺,对医药废水进行有效处理,是将已产生的医药污染物完全降解矿化,以实现零排污。

对医药品的生产、使用与处理实现绿色化管理,对于环境保护和可持续发展,具有重要意义,已引起医药行业和环保工作者的广泛关注,从环境保护角度加强医药品的生产使用管理势在必行。

参考文献

[1]Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance [J]. Environ Sci Technol, 2002, 36(6): 1202-1211.

[2]Miao X S, Bishay F, Chen M, et al. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada [J]. Environ Sci Technol, 2004, 38(13): 3533-3541.

[3]Zhu D, Mukherjee C, Hua L. reen?synthesis of important pharmaceutical building blocks: enzymatic access to enantiomerically pure α-chloroalcohols[J]. Tetrahedron: Asymm, 2005, 16(19): 3275-3278.

[4]Tucker J L. Green chemistry, a pharmaceutical perspective[J]. Org Process Res Dev, 2006, 10(2): 315-319.

[5]Lankey R L, Anastas P T. Life-cycle approaches for assessing green chemistry technologies[J]. Ind Eng Chem Res, 2002, 41(18): 4498-4502.

[6]张珩,杨艺虹. 绿色制药技术[M]. 北京: 北京工业出版社,2006:-18.

[7]Pollard D J, Woodley J M. Biocatalysis for pharmaceutical intermediates: the future is now[J]. Trends Biotechnol, 2007 25(2): 66-73.

[8]徐建中,吴彦艳. 绿色管理的理论研究[J]. 商业研究,2004,(6):48-50.

[9]魏长生. 对制药企业实施“绿色管理”的研究[J]. 中国药业,2006,15(5):31-32.

[10] Boxall A B A, Kolpin D W, Halling-Sorensen B, et al. Are veterinary medicines causing environmental risks?[J]. Environ Sci Technol, 2003, 37(15): 286A-294A.

[11] 赵民生,王会贞,曹秀虹. 滥用抗生素的危害与根源[J]. 食品与药品,2006,8(11):63-66.

[12] 徐道英. “家庭贮药”过期现象调研分析[J]. 药学实践杂志,2006,24(6):367-369.

[13] 杜晶晶, 马爱霞. 对过期药品控制方法的探讨[J]. 中国药房, 2007,18(1):7-8.

[14] 茅竟伟. 国家食品药品监督管理局:建立回收过期药品长效机制[J]. 当代医学,2006,(5):72-74.

[15] 潘志彦, 陈朝霞, 王泉源, 等. 制药业水污染防治技术研究进展[J]. 水处理技术,2004,30(2):67-71.

[16] 夏光程. 抗生素生产废水处理工艺研究[D]. 成都: 西南交通大学. 2005.

第9篇:生物化学在医学中的应用范文

生物医学工程(Bio毗dieazEngineering)学是一门年轻的新学科,从技术角度肴,生物医学工程技术其形成与发展的模式墓本上可归纳为:通过工程技术手段把物理、化学以及技术科学中新的技术、原理、方法应用于研制医疗装!、满足临床诊治的需要,随着科学技术进步、新的物理、化学方法和工程技术不断被应用于医学,医用产品越来越多.在工程学(含电子技术、计算机技术、信.息技术、材料科学)突飞猛进地发展的同时,生命科学也在迅猛发展,近年来迅速兴起的生物技术对给生物医学以极大的推动,将产生分子医学.因此我们对理工学科与生命科学交叉结合而产生的生物医学工程学必须有新的认识.美国学者指出,新的生物医学工程定义是:“生物工程学结合物理学、化学或数学和工程学原理,从事生物学、医学、行为学或卫生学的研究;提出基本概念,产生从分子水平到器官水平的知识,诱发创新的生物学制品、材料、加工方法、植入物、器械和信息学方法,用于疾病预防、诊断和治疗,病人康复,改菩卫生状况等目的”.因此,我们必须考虑到科学技术的进步给生物医学工程学带来的影响:不仅是工程学与生命科学、医学的交叉结合,也包括所有其他学科和生命科学、医学的交叉结合;不仅是工程技术的相应理论方法与生物医学中人体结构功能的交叉结合,而且要考虑工程技术的相应理论方法与生物技术的交叉结合.因此,我们引用根据美国国立卫生研究院有关名词命名专家组最近对生物医学工程学的定义:焦生物医学工程学是结合物理学、化学、数学和计算机科学与工程学厚理,从事生物学、医学、行为学或卫生学的研究;提出墓本概念,产生从分子水平到导官水平的知识,开发创新的生物学制品、材料、加工方法、植入物、导械和信,’.学方法,用于疾病预防、诊断和治疗,病人康复,改善卫生状况等目的.”

二.生物医学工程学科类型

生物医学工程学是理、工学科和生物医学相结合而发展起来的交叉边缘学科,涉及的领域十分广泛,与其他诸如材料、信息、电子技术、计算机科学关系密切,并在不断发展之中.根据学科具体内容可以分为:因为生物医学工程学科具有其他学科所没有的特点,我国仅设一级学科不设二级学科.

1.信息技术型生物医学工程(InformationTeehno一osyBiomediealEngsneering:IT一明E.)其知识体系的组成特点是以电子技术、计算机技术、信.息处理技术的知识为主线,以生物医学方面相应的领域为交叉、结合对象,对其中的问题进行研究.

2.材料技术型生物医学x程伽aterialTeehnologyBiomedicalEngineering:盯一翎E)其知识体系包含材料科学、生物技术、力学、化学、生物化学、信息和计算机技术、医学和生命科学的墓本知识,主要研究对象是生物材料和人工器官,包含新近发展起来的组织工程.

3.生物技术型生物医学工程(BiologiealTeehnologyBiomedicalEngineering,BT一BME)在生物医学工程发展的同时,由于分子生物学的发展产生了生物技术,使得生物医学工程与生物技术交叉结合.美国实验生理学学会联合会(F^SEB)对未来医学发展的分析是“分子医学将在2020年成为人类健康的基础.分子医学的实践将包括新的预防方法、新的诊断方法和新的治疗方法,新的治疗方法将直接针对造成疾病的分子、细胞或生理缺陷.这些新医学方法的墓础将是精确的和无创的成像及诊断技术,……”,这充分说明了在新的时期,生物医学工程必然和分子水平的诊疗技术交叉结合,也就是说生物医学工程必然和生物技术交叉结合,因此必然会产生生物技术型的生物医学工程.其知识体系包含数学、计算机技术、信.息技术、生物学、分子生物学、遗传学等等.

4.生物医学研究型的生物医学工程(BiologiealMediealstudyBi二。dicalEngineeringBMS一BME)由生物医学工程的定义和它的研究内容知道,我们要为深入研究生命过程的规律,揭示生命的本质.因此这类学科的着眼点和落脚点不在于应用,而在于用目前的一切科学技术的理论、方法、技术以某一生命过程为研究对象.所需的是所有理工科、生物学、医学、哲学知识的交叉融合.

5.医疗器械产业型的生物医学工程伽ediealDevieesBIOfnedicalEngineering:MD一BME)生物医学工程所有的研究的最终目的是以各种不同的产品服务于社会,在各种生物医学工程产品中,医疗器械(含各种医疗仪器、医疗设备和耗材等)产品占有很大比t.要过渡到产品必须有由实验室研究到产业化过度的研究阶段,就会形成产业型的生物医学工程.其知识体系包含电子技术、计算机技术、精密机械、生物医学的基本知识、管理学、市场经营等.以往我国医疗界械产业化的发展较发达国家滞后,就是因为这方面的力t相对薄弱,因此一方面应该在医疗界械的公司强化这方面的建设,另一方面应加强高校、研究所与企业的交叉结合.科研成果的产品化研究在医疗界械行业显得尤为重要。

6.在医院中的生物医学工程-----一临床工程随若科学技术和现代医学的发展,生物医学工程对促进医学科学的发展起到了很重要的作用,尤其是在医院的建设和发展中所起的作用更为重要,所居的地位更为明显.医疗机构为了满足社会的需求,在医疗市场的激烈竞争中求得生存与发展,就必须加快自身的现代化建设,在这一进程中,生物医学工程的分支学科一一临床工程已成为现代化医院不可缺少的组成成份,将起到举足轻重的作用.临床工程师、医生和护士共同构成现代化医院的三大支柱川.临床工程在医院中的发展是一个值得关注问翅.临床工程的定义:前面讲过生物医学工程学是一门新发展起来的交叉性学科,它研究内容非常广泛,从纵向看,生物医学工程学的组成除了研究开发以外还有一个重要的组成部分,就是在医院中应用生物医学工程的所有成果---一临床工程,临床工程则是为了利用现代科学和工程技术知识,将现代的生物医学工程学的新技术和成果安全、可东地应用到临床,以提高医疗水平为目的的一个生物医学工程的学科分支.那么,什么是临床工程呢?目前,一般认为在医院中医疗设备的维修管理就是临床工程,我们认为,在医院中所有为了提高医院医疗水平而应用现代工程技术的工作都应该属于临床工程的范畴.在医院临床工程墓本上由五大部分组成:一是以医疗设备的全程技术管理为主,解决医院装备现代化中技术、设备、质t保证和经济管理方面的问题,包含了医院中的设备工程和设备管理工程;二是医疗信息的现代化管理-一Hls(HospitalInfor.tionsystem)系统:使用计算机和通讯设备采集、存储、处理、传翰和翰出门诊、住院息者医护和管理信息,包括临床辅助科室的信息,形成网络系统,实现信息共享,提商医院工作质t和效益;三是和影像存档和通讯--一P^cS(Pict盯e^r。hi,ing.eo二unie。tson:system,):是医院用于管理医疗设备如CT,MR等产生的医学图像的信息系统;四是远程医疗网络系统等:远程医疗就是利用电子通讯网络以电子信号来传递有关医学诊断、治疗、护理、咨询及教育等的信息及数据,其即可以为偏远地区的息者提供医疗服务,也可以作为医生之间进行交流的有效工具;五是参与临床的诊断与治疗一线工作的工程技术:例如放射治疗计划的制定、虚拟手术、理疗和康复等等.临床工程与生物医学工程研究开发是两个紧密相连的必要环节,又具有各自的发展规律.因此,我们既要重视前者的发展,也要重视后者的发展,在医院中更应将后者放在发展的重要的地位.

三.国内外生物医学工程教育棍况

科学与学科有非常密切的关系.科学自身的规律决定学科的规律,科学发展决定学科的建设和发展,当然,学科的建设反过来形响科学的发展.随若人们对健康的关心程度的增加,医学上疾病分析、诊断、治疗和康复等方面的仪器设备逐年增多.因此,在教学科研单位需要有研究人的生命的物理原理、控制过程和研究新的检测、监测生理、生化物理指标的原理、方法、仪器设备;在工业部门,需有设计、制造适于医护人员操作和人事科医学要求的仪器设备的工程师.在医院里,需有掌握医学设备的均t和维修以及培训使用这些设备的人员的工程师;这就要求有一个系统地培养生物医学工程师的教育计划.生物医学工程师要用工程学的方法来解决生命科学上的难题,因此,要求有一些涉及生命科学和工程学的交叉训练,使得学生既要性得工程原理,又要了解如何应用知识来解决生物学和医学上的问题.二十世纪50年代,随着生物医学工程科学研究的发展,产生了生物医学工程学科.由于科学研究的需要,在国外生物医学工程学科发展的最初阶段,是趋向于培养博士水平的高级人员.后来由于注意到实际应用,产生了硕士和学士水平的教学计划.

1.国外高校生物医学工程专业的情况

目前发达国家的很多大学都设有生物医学工程系,仅美国就可在Inter网上查到近百所大学生物医学工程系的主页.《共国新闻》及《世界报道》两媒体2002年联合公布的生物工程/生物医学工程领域最佳研究生院的排名(根据设施、人员、研究成果引用系数等)前十名的学校。.设有叫S方向与BT的较多.以研究生教育为主,本科为附在我国,涉及生物医学工程专业最早的是中专教育、大专教育(1,60年成立的北京商学院就有医疗器械系),真正的生物医学工程学科开始于70年代未,19,8年国家科委成立了生物医学工程学科专业组.从此生物医学工程作为一门独立的学科在我国很快地发展起来.经二十多年的发展,目前全国己有近几十所高校建立有该专业,这些高校均系国内工科、理科、医学的著名院校.我国生物医学工程学科的墓本情况见表2从以上可以看出我国的生物医学工程专业发展非常迅速,据不完全统计,52个院校设有生物医学工程专业,其中有37个理工或综合大学,15个医科院校.

2.我国离校生物医学工程专业的情况分析

(1).我国生物医学工程专业与国外生物医学工程专业的共同点①学科发展迅速国内外高校生物医学工程专业发展十分迅速,国外从20世纪60年代起步,70年代、80年代迅速发展•国郎20世纪’0年代末,8。年代初仅有几所高校建立生物医学工程专业,短短二十年就发展到50个院校建立该专业.②从比较知名的重点院校开始形成辐射美国约翰霍普金斯大学、加利福尼亚大学、麻省理工学院、宾西法尼亚大学、华盛顿大学、密歇根大学等都是较早建立生物医学工程专业的.我国清华大学、浙江大学、西安交通大学、上海交通大学、东南大学、中国科技大学等都是我国著名的科研水平很高的大学,也是我国首批建立生物医学工程专业的高校.③生物医学工程专业的学科以研究生教育为主在国外,很多大学招收研究生的数t超过本科生的数t,研究生的来源更强调从理工科或生物医学专业中选拔.在我国50多个生物医学工程专业中有17个博士学科(14个也收本科,3个仅招收硕士、博士),6个博士后流动站,5个长江学者学科,11个招收本科、硕士,8个院校仅招收硕士,U个院校招收本科、2个招收大专.这充分说明生物医学工程专业教学和科研相比,生物医学工程科研占的比重更大.

3.我国高校生物医学工程专业与国外的不同点(差距)

近年来我国生物医学工程教育发展很快,如前所述建立本科教学的至少有35所院校,通过分析不难发现:①学科模式(研究方向)设!较少所有开设生物医学工程本科专业的学校都是以电子、信.息、计算机应用与医学结合为目标,只有个别学校在培养目标中增加生物材料和人工器官方面的内容.本科教育的专业设!面比较集中在IT一明E,没有川S一SME,各院校的研究生培养(科研方向)基本以生物医学信号的检测处理、医学成像、医学图象处理、医学仪器研究为主,部分涉及到分子电子学、分子光子学、生物力学、生物医学材料、人工器官、组织工程等方向,只有少数大学比较集中在纳米材料、生物医学材料及人工器官、生物医学图像处理.研究生培养的专业面比本科生的专面相对宽广.与生物医学工程专业搜盖面相比显得专业面过于窄.而国外的专业设t显然比我们有优势.从表1中可以看出有很多“生物移植、心血管电生理、脊健损伤研究、功能生物技术、心肺动脉、临床整形外科研究、临床整形外科研究、细胞影像、疼痛神经生理、分子及细胞生物、重组蛋白质表达、药物传输、.生物界面现象、生物热传递、麻挤研究、听觉研究、神经肌肉研究、神经系统分析、视觉研究”一的研究方向,在我国,这些研究方向都被认为是生物医学的研究内容,而不是生物医学工程的研究内容.②以科研带动学科的特点不如国外突出我国本科教育有进一步扩大的趋势,有些没有科研方向的学校纷纷设立生物医学工程专业③没有重视传统中医工程研究④生物医学交叉结合的程度我们不如国外,我们的叫E没有研究生命系统的就是个证明.

4.就业问题

生物医学工程师的就业前景是广阔的,主要就业单位是研究机构、公司和医院.研究机构可以是研究所或大学里的研究中心,他们从事设计和研制医院里所铸的很专门的新设备,也有一部分作为外科或生理研究组的成员参与复杂电子系统的选择使用,也可以研制新设备公司,可以是仪导及制药公司,他们参与新的医疗仪器以及医学及生物学研究用的仪器的研制和生产.他们能够决定一种新的设计是否有藉要,有梢路,能否满足各种要求并符合政府的法律规定,他们也可做为公司产品的推销及售后服务工作.在医院里,他们从事自动化、研制实验室用计算机,病人一一计算机的接口以及有关计算机软件.他们也可以在某一科室〔例如:内科、外科和临床实验室工作),也可以在医院里直接经管生物医学工程部门的工作.他们是医院中工程情报的主要提供者,负贵所有仪器的使用、维修和采购的任务,研究分析和处理数据的方法.生物医学工程师亦参与许多国家研究计划,如在空间计划中设计遥测装I,生命维持系统,人一一机接口设备以及参与空问医学.他们也参与国防计划,环境研究,也可做为环境开发及污染、医院自动化方面的顾问等.

5.生物医学工程专业的继续教育

生物医学工程专业的高等教育与国外相比起步较晚,但经过近20年的发展,现已形成较完菩的学科体系,开设了大专、本科、硕士和博士研究生教育层次.而我国生物医学工程专业继续教育发展较慢,在国家成人教育专业目录中还没有该专业.我校1,%年首次在全军开展了生物医学工程专业专科升本科的函授教育,现已招收7届学员,深受全军各医疗单位技术人员的欢迎,目前地方许多医院有关技术人员也来信询问要求学习.我们认为在新形势下,生物医学工程专业继续教育有着广泛的前景和开展空间.主要原因是:

(1).随着科学技术和现代医学的发展,医院各种诊疗技术和设备越来越多,高新技术和自动化程度越来越高,如果没有生物医学工程专业技术人员的有效参与,现代化医院不可能有现代化的管理和诊疗水平.

(2).从医院实际看.医院医学工程科、信息科、放射科、放疗科、超声科和理疗科的临床工程技术人员是生物医学工程专业专业本科毕业的为数不多,大都是本专业或相关专业大专毕业,知识结构和实际水平很难适应未来的发展需要,必然有一个知识更新、技术提高的问题.

(3).以现代科学技术为核心的、建立在知识和信息的生产、存储、使用和消费之上的经济称为知识经济时代,知识经济时代的到来对现代化医院的科技水平、人才综合素质和创新能力有了更高的标准.开展生物医学工程专业继续教育,必须满足实际,若眼未来,在教育观念、人才培养目标、教学内容和教学方法等方面进行大胆探索.

6.在医学院校内开设生物医学工程专业的特点

生物医学工程专业是一门工程科学,它要求有深厚工程墓础知识,学生的大部分时问都是在学习工程知识,因此,很容易认为在工科院校开设此专业有优势,在医学院校开设这个专业有很大困难.经过几年的实践,我们认为在医学院校办生物医学工程专业.开始时要建立起一整套的工程葵础课教研室和实验室,,这样需要的经费、人员较多,起步比较困难,但只要具备了墓本条件,会有很多优势.

(1).生物医学工程是工程科学对医学的渗透,在医学院校中开设了本专业以后,工程人员和医务人员思想上的沟通就比较方便,较能做到互相理解,这样就便于合作.