公务员期刊网 精选范文 水利技术论文范文

水利技术论文精选(九篇)

水利技术论文

第1篇:水利技术论文范文

1.1水利工程建筑的施工管理在现实中的重要性在实际的水利工程建筑的施工过程中,除了一定的专业技术和资金投入外,还需要一定的管理经验和管理模式。否则会给施工造成散漫的情况。施工现场体现为无组织和无纪律性。因此,在水利工程建筑的施工中要十分重视管理工作,采取科学的模式,保证设备物料的良好工作状态以及工程进度的顺利进行。

1.2水利工程建筑的施工技术的重要性在水利工程建筑的具体施工中,专业的技术是前提。只有技术标准、先进,才能使施工突破难点,顺利竣工。施工技术对于水利产生的效益至关重要。在整个水利工程体系中,突破简单的工程的范畴,是一个关键性的因素。只有将行业内的先进的技术和理论进行有效的结合,广泛用用于水利工程的施工过程,水利工程的作用才能真正展现出来。

1.3水利工程建筑施工技术及管理的必要性在水利工程建筑施工中,技术和管理相辅相成,密不可分。一味重视资金和技术,忽视科学制度和管理方式,就会使得整个工程缺乏一个质量保证。也就影响其社会和生活提高优质的服务。因此,在整个水利工程中,一定要注意将施工管理工作与专业技术进行有机的结合,密切配合。只有这样,才会充分发挥工程的作用,为工程质量做保障。水资源的性质就是它的环保性以及可再生性,不会对环境造成污染。为此,对它的利用需要技术上的支持与保障。因此,技术是保障工程顺利竣工的关键性因素。

2水利水电工程建筑施工技术

2.1施工导流和围堰技术施工导流都是为了对河道来水进行控制,掌控水流时段和水流流量。导流方案的选定,关系到整个工程施工的工期、质量、造价和安全渡汛。事先要做出周密的设计,施工导流要根据当地的自然条件、工程特性来制定方案,所以在进行施工导流的过程中相关技术人员不仅要掌握水利水电工程知识,还要对地理知识和气象知识有一定的了解。围堰是导流工程中的临时性挡水建筑物,围堰要占用河床,水流对围堰的冲击力特别大,所以围堰一定要坚固可靠,要全面考虑结构复杂性与稳固性,减少因过水面积狭窄,水流加快,流量加大。土石围堰施工接头处理,通过扩大接触面嵌入岸坡,以延长防渗体的接触,防止集中绕渗破坏。混凝土围堰应建在岩石地基上,挡水水头高,底宽小,抗冲能力大。

2.2碾压混凝土坝施工技术碾压混凝土筑坝技术特点是使用硅酸盐水泥、火山灰质掺和料、水、外加剂、砂和分级控制的粗骨料拌制成混凝土,采用与土石坝施工相同的运输及铺筑设备,用振动碾分层压实。碾压混凝土坝既具有混凝土体积小、强度高、防渗性能好等特点,又具有土石坝施工程序简单、快速、经济、可使用大型通用机械的优点。碾压混凝土坝的温控措施和表面防裂,采用低热大坝水泥、多掺粉煤灰、用冷水拌合、对骨料预冷降低浇筑温度,对于浇筑层顶面防裂,通常采用尽量缩短层间间歇的方法,在下层顶面未出现接应力前应及时覆盖新浇混凝土。

2.3先进的计算机技术随着信息技术和计算机技术的发展,水利水电工程施工中也开始利用各种计算机软件来提高技术水平比如GOS技术通过测角、测距来进行地面定位,满足测量需要。使用CAD技术来加强构图能力和减轻运算压力。使用GIS和数据库技术帮助工作人员获得精准数据,并进行数据的自动化处理。

3水利水电工程建筑施工技术及管理在实际中的应用

3.1加强技术管理,提高经济效益水利水电工程本身的特性决定了在施工过程中必须加强施工技术管理,并在施工中对发现的问题及时进行处理,因为在施工过程中难免会发生一些不安全的因素,对水利水电工程的施工带来一定的影响,所以在施工前,应认真研读施工图纸,理解设计的意图,发现图纸上的问题应及时跟设计部门能联系,保证施工时顺利进行,并对确保水利水电工程的质量起到十分重要的作用。在水利水电工程施工中通过建立科学的管理制度和组织,使组织能力、管理能力、资金供应达到最佳的状态,为了水利水电工程的开展提高技术、经济、物资支持,对提高经济效益具有十分重要的意义。

3.2建立完善的制度体系对于一个项目来说,应结合实际建立三级技术管理控制网,实行分级管理负责制,落实到人,并在施工过程中加强对技术信息的收集工作,事故处理及分析等,实行出现事故四不放过原则,定期或不定期开展技术交流活动,并认真总结各自的经验和不足,使技术管理水平在实践中得到提升。通过建立健全各项管理制度,并不断强化技术管理的重要性,以减少设备的故障率、提高设备的利用率,提高企业的生产效益,并在施工过程中加强对档案的管理工作,确保资料与实际同步,并确保资料的完整性、系统性、规范性等,认真收集和整理归类有关文书数据、鼠标等原始资料。特别是收集在施工过程三级作业时的真实数据,并进行分类归档,并建立健全文档查阅制度。

3.3加强运行管理,完善管理制度随着我国法制的进一步健全,在水利水电工程建设过程中,应结合项目实际,制定与国家规定向吻合的管理制度,确保工程的顺利实施。在施工过程中,应派人加强对设备的维护和管理,做好设备的运行记录,设备巡检和操作等反应实际问题和现象进行分析,及时找出出现问题的根源、规律,并制定相应的处理措施。通过学习新技术、掌握新工艺,掌握新材料的施工方法,利用普遍的网络计划应用新技术,制定详细的检修网络计划表,以提高设备的检修质量,达到节约成本的目的,对各种设备进行定期或不定期的检测,保证设备的安全运转。

第2篇:水利技术论文范文

各阶段的审查主要依据《细则》和《作业指导书》,在“国际合作与科技业务系统”(以下简称“系统”)信息平台的基础上,对材料和程序进行审核把关。

1.1材料完整性材料包括电子和纸质材料,完整性主要包括各阶段纸质材料按《作业指导书》资料清单要求准备,电子材料需上传“系统”,各阶段必须提交的材料包括标准文本、编制说明、开会或征求意见通知、会议纪要(含专家签名单)及意见汇总处理表等。材料格式需符合《作业指导书》相关要求,纸质材料与电子版应一致。

1.2程序符合性程序审查主要包括标准项目是否属于《水利技术标准体系表》[8]范围内,体系外项目需通过专家论证和进入体系论证,通过签报后方可列入体系内;项目需通过年度计划论证、大纲审查、征求意见、送审稿审查和报批稿审定、审签等几个环节,对于局部修订的标准,通过年度计划论证后,可略过大纲审查和征求意见;大纲审查、征求意见和送审稿审查三个环节需会签主管机构,原则上尚未通过会签的标准项目不予审查。若主持机构和主编单位相同,应由主管机构召开各阶段审查工作会。

2审查过程中存在的主要问题

对各阶段材料审查主要集中在编制说明、标准文本、意见汇总处理表、会议文件、变更情况等。

2.1格式不符合要求《作业指导书》包含22个附件和附表,对标准项目建议书、申报书、工作大纲、编制说明、意见表及其处理表、变更申请表等内容的格式均有明确规定和要求。但是在审查过程中发现不少提交的材料格式仍千差万别,除不符合相关要求外,材料的往复修改和审核也从一定程序上影响了标准编制进度。

2.2内容填写不全主要集中在编制说明基本信息填写不完整;技术要素未填写或填写不全、未正确界定、与相关标准协调性不足等;意见汇总处理表中部分采纳或不采纳意见未说明理由或沟通情况、采纳情况未在标准文本中得到落实等。

2.3标准文本存在的主要问题从标准文本看,其编制内容及过程应符合《标准的编写》相关要求。标准的体例格式是标准的表现形式,是标准区别于任何其他行政文件及科技著作的显著特点,其是否规范不仅直接关系到标准质量,而且影响到标准被接受的程度和执行的效果。体例格式主要依据GB/T1.1《标准化工作导则第1部分:标准的结构和编写》、SL1《水利技术标准编写规定》及《工程建设标准编写规定》,水利技术标准可分为工程建设类与非工程建设类,其体例编写格式应符合表1的规定。主要问题包括体例格式未按要求编写,语言不够简练,规范性、指导性不强,内容纳入角度不当,技术含量不高,层次结构划分不合理,科学性欠缺等。不少标准在审查或征求意见时,邀请单位或专家地域范围及专业领域较窄,仅限于某一相关或熟悉的领域,未邀请相关业务司局、标准化专家参会,专家代表性不足,造成标准使用范围或对象过于单一,甚至出现标准审查质量不过关,严重影响标准质量,造成后期标准被暂缓或结题的现象。无论是水利技术行业标准还是国家标准,参会或征求意见的单位和专家都应具备一定代表性。邀请参会或征求意见的单位或专家不能与编写组人员重复,应避免发生自编自审的情况。对于征求意见阶段反馈意见条数较多、处理时部分采纳或不采纳条数较多且沟通尚未达成一致情况的单位或专家应邀请参会。标准审查应邀请相关标准关联度较高的主编单位或主要起草人参会;邀请相关业务司局人员参会;邀请标准化专家参会。如果是国家标准,为保证审查的全面性,应邀请相关部委、其他非水利行业单位专家参会。

3建议

3.1加强标准的编写及体例格式等相关内容的宣贯培训在主编单位开展编制工作前,对编制组及管理人员展开标准编写及体例格式等方面的培训,尤其是GB/T1.1、SL1及《作业指导书》的培训。同时,应结合具体的标准和相关要求,与编制组就常见问题进行交流和探讨,从一定程度上提高标准编制质量,加快编制进度。

3.2提高水利技术标准基础工作的研究目前水利技术标准的审查主要依据《作业指导书》和“系统”,不少主编单位反映在实际操作过程中,需提交的材料较多,程序较为繁琐,加大了工作量,影响了编制进度,“系统”的操作人性化不足,行标审查和国标审查要求应不同等问题。因此,应真正从提高标准质量、切实做好管理工作的角度出发,除加强培训和沟通外,应做好相关基础工作的研究,优化顶层设计,简化材料和程序。

3.3完善专家库建设专家在标准审查中起着至关重要的作用,一方面需完善相关领域专业技术型专家库建设,另一方面也要加强标准化专家库的建设,积极吸收不同领域的专家,完善和优化专家库,为不同标准提供专家咨询和指导。

第3篇:水利技术论文范文

1.概述

我国地处世界上两个最大地震集中发生地带——环太平洋地震带与欧亚地震带之间,地震较多,大多是发生在大陆的浅源地震,震源深度在20km以内。位于青藏高原南缘的川滇地区,主要发育有北西向的鲜水河-安宁河-小江断裂、金沙江-红河断裂、怒江-澜沧江断裂和北东向的龙门山-锦屏山-玉龙雪山断裂等大型断裂带[1]。该区新构造活动剧烈,绝大多数属构造地震,地震活动频度高、强度大,是中国大陆最显著的强震活动区域[2]。

而西南地区蕴藏了我国68%的水力资源,水利工程较多,且主要集中在川滇地区。据

2005年数据,四川省有大中小型水库约6000余座[3]。2008年5月12日的四川省汶川大地震,初步统计,已导致803座水库出险,受损的大型水库有紫坪铺电站和鲁班水库,中型水

库36座,小一型水库154座,小二型水库611座[3]。此外,地震还致使湖北和重庆地区各

79座水库出现险情[4,5]。为保证水利工程的安全运行,地震之后及时对水利工程进行检测,并对受损工程进行监

测和修复是必要的。有关震灾受损水利工程修复方面的文献不多,散见于各种期刊或研究报告,为便于应用参考,本文搜集、筛选了一些震灾受损水利工程的案例,并对一些实用技术进行了介绍。

2.地震对水利工程的危害

由于地震烈度、地震形态以及水库本身工程质量的不同,地震对于水利工程的危害也有所区别。高建国[6]对我国因地震受损水利工程进行分类整理,认为水库坝体险情主要可分为

3级:1级,一般性破坏,不产生渗漏;2级,严重性破坏,坝体开裂渗漏;3级,垮坝(崩塌),水库水全部流走。

我国因地震引起的水库垮坝并不多见,总结国内外地震对水利工程的危害,主要有以下几种形式:

2.1坝体裂缝

地震作为外力荷载将会导致大坝尤其是土石坝整体性降低,防渗结构破坏,引起大量裂缝。地震会产生水平和垂直两个方向的运动,并使周期性荷载增大,坝体和坝基中可能会形成过高的孔隙水压力,从而导致抗剪强度与变形模量的降低,引起永久性(塑性)变形的累积,进而导致坝体沉降与坝顶裂开。

2003年10月甘肃民乐—山丹6.1级地震引起双树寺水库大坝、翟寨子水库大坝,坝顶

均出现一条纵向裂缝,长约401~560m,最大宽度2cm左右,并有多处不同长度断续裂缝,

防浪墙局部错动约0.5cm。大坝右侧出现山体滑坡,形成长条带及凹陷,滑坡长37m左右,凹陷坑深2.5~3m、宽7m左右,凹陷处上部山体有多条斜向裂缝,缝宽20cm左右。李桥水库坝顶有纵向裂缝,多处缝宽在2~5mm,其中一条长约100m左右,出现横向贯通裂缝,防浪墙出现多处竖向裂缝。这些裂缝在坝体漏水、自然降水和温度作用下,又将产生新的冻融、冻胀破坏,影响大坝的整体性和稳定[7]。

托洪台水库位于新疆布尔津县境内,1995年被列为险库,1996年新疆阿勒泰地震(6.1级),使拦水坝出现10处横向裂缝,3处纵向裂缝,最宽处达16cm,长17m,防浪墙垂直裂缝27处。经评估,水库震后只能在低水位运行,致使发电系统瘫痪,同时对于下游构成潜在威胁[6]。

岷江上的紫坪铺水利工程位于都江堰市与汶川县交界处,2006年投产,是中国实施西部大开发首批开工建设的十大标志性工程之一。2008年5月12日的汶川地震造成紫坪铺大坝面板发生裂缝,厂房等其他建筑物墙体发生垮塌,局部沉陷,整个电站机组全部停机。[3]。此外,地震对泄水输水建筑物也将造成巨大危害。2003年8月16日赤峰发生里氏5.9级地震,使沙那水库混凝土泄洪灌溉洞产生纵向裂缝,长15m,最大裂缝15mm;环向裂缝

22m,最大裂缝宽度1.8mm;洞出口消力池两侧边墙产生竖向裂缝,总长15m,最大裂缝宽

度25mm。大冷山水库溢洪道两侧导流墙产生裂缝,以纵向裂缝为主,最大缝宽12mm[8]。

2.2坝体失稳

地震可能引起坝基液化,从而导致大坝失稳。地震时,受到周期性或波动性荷载作用,土石坝内土体将产生递增的孔隙水压力和递增的变形。粘性土体构成的土石坝在地震中相对安全。但相对密度低于75%的粉砂土和砂土,在几个循环之后孔隙水压力就会显著上升,当达到危险应力水平时,土体在周期性荷载作用下显示出极大的变形位移,坝内土体就会呈现出液化的流态,导致坝体失稳[9]。

喀什一级大坝1982年施工时,其坝体及防渗墙都未进行碾压,致使密实度降低,1985

年地震时,由于液化和沉陷,导致该坝整体失稳破坏。

美国加州的Sheffield坝,1917年建成,坝高7.63m,坝顶宽6.1m,长219.6m,水库库

容17万m3。1925年6月距坝11.2km处发生里氏6.3级地震,长约128m的坝中段突然整体滑向下游。事后,经调查研究发现,坝体溃决的主要原因是地震使饱和土内的孔隙水压力增大,造成坝下部和坝基内的细颗料无凝聚性土发生液化。

地震还会造成土石坝体脱落或堆石体沉陷,从而引起坝体失稳。在库水位较高的情况下,堆石体沉陷会造成坝体受力不均,更严重的会引起库水漫顶,引发坝体垮塌。1961年4月

13日在距西克尔水库库区约30km处发生里氏6.5级地震,该水库位于VIII度区[10],坝体出现了严重的堆石体沉陷现象,一段220m长的坝体沉陷值达到2~2.5m,崩塌范围在从坝轴线上游3~10m到下游的35~50m[11]。

前面述及的沙那水库土坝和朝阳水库因地震致使土坝排水体砌石脱落,经抗震复核下游坝坡不稳定[8]。

2.3岸坡坍塌

若水库两岸有高边坡和危岩、松散的风化物质存在,地震发生后,造成的岩体松动,可诱发产生崩塌、滑坡和泥石流,甚至形成堰塞湖等现象。

乌江渡水库处于地震多发区,1982年6月地震中,化觉乡东部厚层灰岩和白云岩地层

中发生大面积崩塌。同年8月,化觉、柏坪一带又发生较大规模的地层滑动,影响面积约

18km2[12]。

5•12汶川大地震造成四川多处山体滑坡,堵塞河道,形成34处堰塞湖。其中唐家山堰塞湖蓄水过1亿m3,另外水量在300万m3以上的大型堰塞湖有8处[13],对下游地区造成严重威胁。

另外,地震还可能对水利工程一些其它部分造成损坏。如1995年1月日本阪神淡路7.2

级地震[14,15]中,使堤防基础液化发生侧向流动,造成堤防破坏以及护岸受损。我国历次地震中,出现较严重险情的多为土石坝,且多为年代较久远的土石坝,如果发

生强地震就更容易造成损坏[16]。

3.震灾受损水利工程的修复技术

地震后受损水利工程修复措施主要包括以下几个方面:

3.1坝体监测

地震后,对于受损水利工程,应及时降低水库运行水位,并进行充分的坝体探测。对土石坝,可开挖土坑检测,对混凝土坝,则可用无损探伤检测[17]。包括使用地震波法、地质雷达、水下声纳法检测侵蚀程度,必要时还需要采取槽探、钻孔、孔内地球物理方法进行检测。根据地震前后大坝监测结果的对比分析,判明是否存在普遍的结构损伤迹象。尤其需要加强对坝体变形和渗透的观测,防止裂缝前后贯通,内部发育,产生渗漏通道。同时,加强对输水洞漏水、溢洪道裂缝的监测,以防渗漏进一步扩大[18]。

震后坝体探测中,作为一种非破坏性的探测技术,地质雷达具有探测效率高、分辨率高、抗干扰能力强等特点,可以快捷、安全地运用于坝体现状检测和隐患探查[1

9]。

2003年甘肃山丹地震后,利用地质雷达对双树寺、瞿寨子、瓦房城等水库的震后坝体裂缝、坝基渗透、溢洪道、高边坡开裂和库岸道路滑坡等进行了探测[20],效果很好。

3.2裂缝修复

对于已经出现的裂缝,要对其分布、走向、长度和开度等进行定时观测和检测。在大坝主裂缝部位设置标志,缝口要覆盖塑料布,防止雨水流入加速其恶化。对受洪水威胁的建筑物,要采取临时措施(如围堰)进行保护。

裂缝的修补应从实际出发,在安全可靠的基础上,同时考虑技术和施工条件的可行性,力求施工及时、简单易行、经济合理。常用的有以下几种处理方法:

3.2.1表面处理法

表面处理法[21]主要适用于对结构承载能力没有影响或者影响很小的表面裂缝及深层裂缝,同时还可以处理大面积细裂缝的防渗防漏。常用的有表面涂抹水泥砂浆、表面涂抹环氧胶泥以及表面涂刷油漆、沥青等防腐材料等,从而达到封闭裂缝和防水的作用。在防护的同时应当采取在裂缝的表面粘贴玻璃纤维布等措施,这样可以防止混凝土在各种作用下继续开裂。

3.2.2灌浆法

灌浆法主要应用于对结构整体有影响或有防水防渗要求的混凝土裂缝的修补。经修补

后,能恢复结构的整体性和使用功能,提高结构的耐久性。

灌浆法[22]分水泥灌浆和化学灌浆。水泥灌浆适用于裂缝宽度达到1mm以上时的情况;裂缝较窄的情况下宜采用化学灌浆。此外,工程经验表明水泥浆适于稳定裂缝的灌浆处理,不适用于活缝或伸缩缝的处理。化学灌浆也存在类似问题,应用最广的环氧树脂浆固结体是脆性材料,因此对活缝应选用弹性材料。部分化学灌浆还有毒性,应加强施工人员的保护措

施。

大量实践证明,灌浆法是目前最有效的裂缝修补处理方法。

3.2.3结构加固法

危及结构安全的混凝土裂缝都需作结构补强。结构加固法适用于对整体性、承载能力有较大影响的较深裂缝及贯穿性裂缝的加固处理。混凝土结构的加固,应在结构评定的基础上进行,以达到结构强度加固、稳定性加固、刚度加固或抗裂性加固的目的。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。结构加固法还适用于处理对结构的承载能力、整体性、耐久性有较大影响的不均匀沉陷裂缝和较为严重的张拉裂缝

[23]。

3.3滑坡处理

土坝滑坡有剪切破坏、塑流破坏、液化破坏三种形式[24]。可采用“上部减载”与“下部压重”法来处理。“上部减载”就是在滑坡体上部的裂缝上侧削坡,以保持稳定;“下部压重”就是放缓下部坝坡,在滑坡体下部做压坡体等。当滑坡稳定后,应当及时进行滑坡处理[17]。主要处理方法介绍如下:

3.3.1放缓坝坡

若滑坡由于剪切破坏造成,则放缓坝坡为最好的处理方法。可填入土体将坝坡放缓,或是先削掉滑动面上坝顶的土体,使滑动面坝坡变缓,然后再加大未滑动面的断面[24]。

对存在失稳危险的土石坝也可采用水上抛石法放缓上游坝坡,施工方法简单,且不受季节和水位的变化。加固工程不破坏原坝体结构,减去拆除原有的坝体护坡石和反滤料工序,对保护原坝体非常有利。石料渗透系数大,在库水位降落时,新筑部分的自由水面线,几乎与库水位重合,这样就造成新增断面和原有断面共同承担原有坝壳中库水位降落时产生的渗透水压力及地震产生的超隙孔压力,起到压重的作用,从而有利于大坝的稳定[25]。

3.3.2压重固脚

若滑坡体底部滑出坝趾以外,则需要在滑坡段下部采取压重固脚的措施,以增加抗滑力。压重固脚的材料最好用砂石料。在砂石料缺乏的地区,也可用土工织物,代替反滤,以达到排水的要求[17]。

通过在坝体上加压盖重,或对坝体培厚加固处理,可以进一步提高防渗流土、坝体抗裂和抗渗性能,同时增加坝体稳定性。

实例:1999年山西大同堡村发生5.6级地震,对位于震中附近的册田水库造成VII度影响,坝体产生结构变形[26]。震后对主坝和北副坝下游坝坡采用石渣进行培厚加固处理。主坝所在956m高程以下石渣培厚体,坝坡分别为1:2.75,在956m高程设12m宽的平台,在

949m高程、940m高程设3.0m宽的马道,并在石渣体与原坝体设置反滤层。培厚坝体后,

即使再次遭遇地震,由于坝体在正常水位下(956m高程)宽度增加,也可避免大坝整体失

稳,从而保证大坝的安全[27]。

3.3.3库岸岩体加固

对于地震中松动的库岸岩体,应采取工程措施进行加固。地震后,首先需要对库岸岩石情况进行重新评估,选择加固方式。库岸加固通常采取锚固、支挡、排水相结合的方式。锚固措施是利用预应力锚索和锚杆固定不稳定岩层,适用于震后加固岩体滑坡和不稳定的局部岩体。通过一端与建筑物结构相连,一端打入岩体内部,在增强岩体抗拉强度的同时,

改善库岸岩体的完整性[28]。该方法在高切坡中被广泛应用。支挡方法是通过支挡体来平衡滑坡体的下滑力,确保滑坡体的稳定安全。支挡结构能有

效地改善滑坡体的力学平衡条件,阻止滑坡、泥石流等。常用的方法有重力式挡墙、拉钉挡墙、加筋土挡墙、抗滑桩等[29]。

此外,由于地震过后经常伴随暴雨,更易在松动岩石处产生滑坡、泥石流等灾害,因此需及时排水,包括地表水和地下水。可设置截水沟排除地表水;排除地下水可用廊道、竖井和水泵等。在美国、加拿大和日本等国家较多采用专用钻机打水平孔的办法排地下水[28]。

3.4渗漏修复

应根据具体情况降低库水位或放空水库,彻底修复防渗体,对由于浸润线过高而逸出坡面或者由于大面积散浸引起的滑坡,除结合下游导渗设施外,还应考虑加强防渗。

3.4.1劈裂灌浆

对于土石坝较严重的渗漏破坏,可以采取劈裂灌浆或加强防渗斜墙等方式解决。劈裂灌浆是指在垂直渗流的方向沿坝轴线劈开坝体,灌入稠泥或水泥砂浆,截断渗流通道,可以在短时间内坝体内的渗流,使大坝转危为安。

采用劈裂灌浆技术的岭澳水库具体做法如下:根据坝长选用适量的灌浆机,多台灌浆机同时开灌,为使浆液尽快硬化固结,所用浆料为掺入速凝剂的水泥加粘土。在灌浆工艺上,连续的多次复浆,使混凝土或泥浆墙尽快加厚,并使贯通的漏水通道通过灌浆压力和多次灌浆挤压膨胀与原坝土体紧密结合,最终形成垂直连续的防渗混凝土砂浆墙,防止再次出现漏水通道的可能[30]。

3.4.2开挖置换

置换技术是土石坝震后修复中的一种重要手段,尤其对于心墙开裂的土石坝具有重要意义。首先需要通过探测技术检测到侵蚀的区域,然后在心墙的下游侧补填塑性混凝土,并用颗粒反滤层加以支持。最后使用水泥膨润土混合物进行灌浆。置换技术可以有效阻止土石坝心墙的进一步破坏,达到防渗漏的目的[18]。

实例:新西兰的马拉希纳坝,在经历埃奇克姆地震后,初期表现稳定,在1987年12月后出现水位明显下降的现象。通过详细的监测发现,虽然大坝没有遭受严重的渗漏,但左坝肩心墙和下游副心墙出现明显的开裂和侵蚀,且侵蚀依然在继续发展。持续不断的侵蚀导致库水位不断下降,因而采取心墙置换的方式,即对左右岸坝肩进行开挖,喷上混凝土,置换开挖出来的材料。水库再次蓄水时没有出现新的事故[18]。

3.4.3排水设施

在阻止渗流发生的同时,需要做好排水工作,通过设置宽敞的排水带,使渗流能顺利排走,降低坝体内的浸润线,减小孔隙水压力。

4.典型水利工程抗震抢险及修复实例

4.1美国Hebgen坝

Hebgen土石坝[31]位于美国Montana州,1915年建成,1959年8月遭受里氏7.1级的强烈地震,坝和水库所在地变形并整体下沉约3.1m,右岸溢洪道严重损坏,坝体沉陷开裂,水库岸坡坍塌,库水震荡并漫溢坝坝。当时此坝并无抗震设计,承受地震对其的各种危害而未垮坝,其破坏模式和耐震经验极有借鉴意义。

当时业主Montana电力公

司采取的紧急抢救措施包括:

(1)立即将泄水底孔进水口原用迭梁封闭的二个孔口开启,以80m3/s的流量泄水降低库水位。

(2)对半角沉陷区和被流冲蚀的坝下游面填土修复。检查表明,心墙与溢洪道连接处的漏水并非通过心墙上的裂缝而是从破坏的溢洪道流出。

(3)在心墙的大裂缝处下游,打竖井检查和修补。同时对下游河岸坍方区进行了修整。此后于1960年4月开始对溢洪道、坝体心墙和上游面进行了全面的修复和加固工作。

至今运行完好。

4.2美国LowerSanFernando坝

LowerSanFernando坝[31]位于美国加州洛杉矶市北,1912年动工,最大坝高43.2m,坝顶宽6m,长634m。1971年2月在坝东北12.9km处发生里氏6.6级地震,致使主坝发生巨大滑坡,坝的上游部分带动坝上部9.2m高的坝体和坝顶一起坍落滑向水库20多米远。

事故发生后,救援人员立即采取了如下措施:一方面立即运来砂袋加固筑高坝的低陷部位;另一方面紧急撤离坝下游地区8万居民;此外,通过2条泄水道和3条引水管排放水库中的水。

经初步调查和后期进一步挖槽、钻孔取样研究得出,坝内有大范围土区在地震后液化,但液化区被强度较高的非液化土约束住,因而直到液化区内有足够扩张力,促使土向外和向下移动时,才出现大规模滑动。

4.3新疆西克尔水利工程

西克尔水库[10,11]位于新疆伽师县东北西克尔镇,1959年建成使用,为均质土坝,设计库容10053万m3,属大型拦河式平原水库。该工程自建成以来共经历了15次地震,其中较严重的有3次:1961年4月13日发生6.5级地震,震中距水库约30km,致使220m长的坝出现沉陷崩塌,余坝产生165条裂缝;1996年3月19日发生6.4级地震,坝段出现涌沙,裂缝,局部产生沉陷;2002年3月3日,阿富汗发生里氏7.1级地震,造成水库副坝段出现决口,并迅速扩大到50m左右,决口流量约120m3/s,损失惨重。

由于西克尔水库运行年限长,且早年建设时没有进行地质勘探,因此极易糟受地震破坏。多次地震后,主要采取的措施有:

(1)加高坝顶,坝后设置压重,并铺设无纺布反滤。

(2)大坝决口后,进行抢险封堵,修复缺口。

(3)按库区基本烈度八度进行设计校核,对西克尔水库主坝、副坝和其它建筑物进行加固修复。针对部分坝段坝基地震液化问题,主坝采用压盖重措施,以进一步提高防渗流土、坝体抗裂和抗渗性能。副坝部分改线,采用粘料含量高的土进行填筑,加固填筑总方量为

58.59万m3,其中粘土39.29万m3,占60%。

4.4北京密云水库

密云水库位于北京密云县城北13km处,库容43.8亿m3,是北京市民用、工业用水的主要来源。水库始建于1958年9月,分白河、潮河、内湖三个库区,主要建筑有白河主坝

(高66m,长1100m)、潮河主坝(高56m,长960m)和5道副坝等。

1976年7月28日,河北唐山发生里氏7.8级强烈地震,白河主坝发生强烈扭动,主坝水面以下6万m2的块石坡和砂砾保护层滑落,受损严重。地震后,采取的主要措施[6]有:

(1)及时探测大坝裂缝,并派潜水员进行水下探测。

(2)通过筑堰建闸,把密云水库分隔成两个库区,放空库水后,进行全面检查加固。清除白河主坝上的砂砾保护层,加厚铺盖粘土斜墙,改用碴石保护层,往水下填粘土及砂石

达20万m2。随后,打通白河廊道、削坡清基,进行坝体加固。

(3)加固了3座副坝,并增建了3条泄水隧洞、1座溢洪道等。

白河主坝加固工程于1977年11月21日完成,达到了国家一级工程标准,至今完好。

5.小结

地震后受损水利工程修复是项复杂的工作,要因地制宜尽快采取最合适的方法进行修复。几条主要结论如下:

(1)地震发生后,各级水行政主管部门应该对境内的水利工程,尤其是堤防、水库大坝、水闸等工程进行排查,及时掌握工程破坏的情况及其隐患,有针对性地制定抢修方案。对地位重要、关系重大、危险性高的受损水利工程,要抓紧修复,确保度汛安全。

(2)坝和地基土料的液化,是导致垮坝或严重破坏的主要原因,此外,较普遍的震害有滑坡、开裂、沉陷和位移。

(3)尽可能保证水坝顺利泄水,降低蓄水位,避免出现垮坝事故。

(4)目前对于水利工程一般都有相应的突发事故(如地震、洪水等)预警机制,但对于如何应对出现的险情,采取必要的工程措施,尚是一个薄弱环节,宜提高认识,加强要应的工作。

(5)对山区河流因沿岸崩山、泥石流等形成的堰塞湖,要当机力断主动尽早清除,以避免水位升高,堰塞湖溃决形成洪灾。

参考文献

[1]苏有锦,秦嘉政.川滇地区强地震活动与区域新构造运动的关系[J].中国地震,2001,17(1):24~34.

[2]龙小霞,延军平,孙虎,等.基于可公度方法的川滇地区地震趋势研究.灾害学,2006,21(3):81~84

[3]任波,徐凯.四川已发现803座水库受损[OL].[2008.5.14].

/20080514/61586.shtml

[4]孙又欣.汶川地震造成我省水利工程新隐患[OL].[2008.5.14].

/iNews/Index/Catalog1/8493.aspx

[5]中评社.汶川地震灾后余波!重庆79座水库出现险情[OL].[2008.5.17].

/doc/1006/4/7/9/100647908.html?coluid=45&kindid=0&docid=100647908&mdate

=0517123254

[6]高建国.中国因地震造成的水库险情及其防治对策[J].防灾减灾工程学报.2003,9:80~91

[7]王东明,丁世文,等.对甘肃民乐—山丹6.1级地震震害的几点认识[J].自然灾害学报,2004,13(3):

122~126

[8]王艳梅,李俊,等.赤峰市“8•16”地震对震区水利工程的危害及应急措施[J].内蒙古水利,2003,(4):

66~68

[9]K.维克塔乔姆,R.K.基特里亚.与土石坝有关的地震问题[J].水利水电快报,1999,11:5~7

[10]库尔班阿西木.地震对西克尔水库大坝工程的影响和抗震加固[J].大坝与安全,2006,6:64~68

[11]库尔班阿西木.地震对平原水库大坝的影响和抗震加固[J].地下水,2006,8:82~85

[12]覃子建.乌江渡电站水库地震灾害[J].地震学刊,1994,3:42~49

[13]吴胜芳.唐家山堰塞湖库容逼近1亿立方米,3万人转移.[OL].[2008.5.23].

[14]张敬楼.日本兵库地震及水利工程震害综述[J].水利水电科技发展,1995,10:17~19

[15]史鉴,汤宝澍;从日本阪神淡路大地震——谈我省水利工程抗震加固问题,陕西水利,1999,(Z1):

50~51

刘真道.浅谈灾后小型水库工程安危状况与对策[J].浙江水利科技,2001,(sup):118

水利部国际合作与科技司编.抗震救灾与灾后重建水利实用技术手册.2008.5.15

M.D.吉隆,C.J.牛顿.地震对新西兰马塔希纳坝的影响[J].水利水电快报,1995,4:1~8

杨金山,卢建旗.地质雷达技术在水利工程中的应用[J].地质装备,2001,12:7~9

马国印.地质雷达在水库震后病害检测中的应用[J].甘肃水利水电技术,2007,3:47~48

喻文莉.浅议混凝土裂缝的预防与处理措施[J].重庆建筑,2007,(4):36~38

鞠丽艳.混凝土裂缝抑制措施的研究进展[J].混凝土,2002,(5):11~14

陈璐,李风云.混凝土裂缝的预防与处理[J].中国水利,2003,(7):53~54

肖振荣.水利水电工程事故处理及问题研究[M].北京:中国水利水电出版社:2004

杜智勇,李贵智,等.柴河水库除险加固综述[A].全国病险水库与水闸除险加固专业技术论文集[C].

北京:中国水利水电出版社,2001.212

[26]贾文.册田水库大坝工程场地地震地质灾害评价[J].山西水力,2004,6:67~68

[27]朱宏官,陈连瑜.中强地震对册田水库大坝造成的危害及安全预防处理[J].山西水利科技,2001,(1):

71~73

[28]吴凤英.浅谈水库库岸滑坡[J].广州水利水电,2007,4:17~18

[29]王连新.水库滑坡治理[N].长江咨询周刊,2007,6:B01

[30]白永年.劈裂灌浆技术在岭澳水库大坝防渗加固中的应用[A].全国病险水库与水闸除险加

固专业技术论文集[C].北京:中国水利水电出版社.2001

[31]中国水力发电工程学会史料信息组,上海大科科技咨询有限公司.国外土石坝地震震害实例和统计[R].

2001.2

Casestudiesandrepairingtechniquesrelatedtohydraulic

engineeringprojectsdamagedbyearthquakes

MaJiming,ZhengShuangling

DepartmentofHydraulicEngineering,TsinghuaUniversity,Beijing(100084)

Abstract

EarthquakesfrequentlyoccurinChina,especiallyintheSichuan-Yunnanregionwheredensehydro

projectsareconstructed.Actingasexternalforces,earthquakescandecreasetheintegrityofthedams,causedamcracks,landslide,settlementanddisplacement,foundationliquefaction,resultingindaminstabilityorevendamfailure,aswellasthedamageofoutletstructures.Besidesthedamageofhydroprojects,seismicactivitiesalsothreatenthedownstreamarea.Basedontheexistingliteraturedataindomesticandabroad,thispaperintroducestheseismicdisastersregardinghydroprojects,especiallythesoilandrockfilldams.Somepracticalremedialmeasuresandrepairingtechniquesaresummarized

第4篇:水利技术论文范文

1.1混凝土灌浆

水利电力工程中,混凝土的体积往往较大,因此在施工中难免会出现裂缝,此时就需要进行灌浆技术对其进行修复,嵌缝技术就是一种常见的技术形式,其可以对混凝土裂缝进行修复。沿着裂缝开槽,在槽内嵌入塑性材料或者刚性防水材料等,达到封闭裂缝的效果。常用的塑性材料包括聚氯乙烯胶、塑性油膏等等,刚性的封闭材料则包括聚合水泥砂浆等。混凝土裂缝的灌浆技术则常用环氧灌浆技术,就是将环氧树脂灌浆材料进行灌注,环氧注浆的材料往往选择邻苯二甲酸二丁酯、乙二胺等等。

1.2孔口封闭灌浆技术

该技术是一种自上而下的灌浆技术,也可称之为循环灌浆技术。孔口封闭灌浆技术适应最大压力>3MP的帷幕灌浆工程项目,小于其参考值的帷幕工程则需要选择性应用。利用孔口封闭灌浆技术应注意一下几个要点,如钻孔的直径控制,应<60mm;孔口管道必须进行牢固的嵌入,买入到岩层的深度按照灌浆的压力所定,最大的灌浆压力则控制在5MPa以内,最大压力时嵌入岩层的深度应>2m;灌浆应选择循环式施工,自上而下的灌注,分阶段进行;孔口管道分为多个灌浆段,应尽量选择较短的分段发方式,压力增加应尽量快速,段长和相应的灌浆压力应进行事前试验;灌浆过程中应经常性的活动灌浆管,回浆管应保证15L/min的回流量,防止灌浆管道出现凝结。

1.3大吸浆灌浆技术

应用中主要是控制灌浆的压力和流量,通常利用低压或者自流的方式对裂缝进行灌浆,泥浆流动性降低后在逐步升高压力,以此增加灌浆量。同时限制灌浆的流量,采用低流量配合压力,减少灌浆在裂缝中的流动速度,使得泥浆沉淀,灌注量降低后再增加压力,提高灌浆量,直至完成灌浆。

2水利电力工程大坝施工中灌浆技术的应用

水利电力工程对质量要求较高,在水利电力工程的大坝工程中有多种灌浆技术被应用,但是应根据实际的情况选择不同的技术措施,不同的灌浆技术也有着不同的作用效果。具体情况如下:

2.1吸浆量较大的灌注措施

在水利电力施工中,大坝的施工需要灌浆作业在很短的时间内完成施工,但是因为地质和限制的因素,使得泥浆不能很快的凝结,此时泥浆冲基础底部渗出,导致灌浆效果不佳。此时应进行低压灌浆观察泥浆的流动情况,选择逐步增加的方式进行灌浆。也可选择方法限制吸浆的情况,加速泥浆的流动情况。然后提高泥浆的黏度从而控制流动性,降低泥浆流速而保证凝结。进行灌浆的过程中应考虑对泥浆的组份进行调整,同调节灰水比和外加剂填入的方式来控制泥浆的凝固速度,人为控制泥浆流动性。在水利电力大坝工程的施工中,也可采用灌注间歇砂浆和砂浆的方式来提高灌浆的施工质量,灌浆过程中,灌浆间隔控制在2~6h,最后泥浆凝固后达到一定的强度后,扫孔和复灌等。

2.2漏水通道灌浆

水利电力大坝工程因为受到地质环境的影响,往往存在不可控的问题,施工过程中环境复杂且地质改变的情况时有发生,在施工中容易出现漏水的情况,影响灌浆的质量。针对这个问题应采用一些外部干扰的措施,如爆理,利用爆破方式破坏漏水结构,再在漏水的位置采用灌浆的方式进行控制。但是这样的处措施往往不能达到工程质量要求。增加了工程成本以及难度。所以在实际的工程中可以采用以下措施进行控制,利用模袋灌浆,一般选择尼龙和聚丙烯为材料的袋子,进行堵漏并灌浆;利用填充级别的配料,在漏水的地方进行处理,利用大粒径的砂石进行灌浆;利用双浆灌浆技术,将水泥浆和速凝剂分别从两个管道进行灌注,使其进入到混合器,混合后再进入灌注的区域,这样可以增加防渗漏的效果,对漏水点进行控制。

2.3接缝灌浆技术

水利电力大坝的工程中,坝体填筑的工作是一项重要的施工项目,在施工中其将直接影响到整体质量。坝体建设中首先应合理的规划工作量,选择工艺和施工方案使之适应项目需求。对坝体施工的工作量进行分配与组织。灌浆施工也应按照坝体施工的需求进行选择与实施。根据坝体情况准备建筑材料和场地等,根据作业时间来控制材料质量,避免土料热量的流失等,提高施工的效率和质量。在水利水电坝体施工中灌浆技术主要是针对接缝处理,是一种主要的技术措施。通常选择盒式灌浆、骑缝灌浆、重复灌浆等。在施工中3种灌注方式可以进行重复使用,根据不同的灌浆特征以及工程情况配合使用。盒式灌浆因为灌浆的质量较高,回浆管的管路不易阻塞等优势,在坝体接缝灌浆选择中被普遍认可。但是系统消耗的管材相对多,其成本使其受到限制。重复式灌浆系统布置方式主要因为不堵塞管道而能进行重复施工。骑缝灌浆管理系统因为其扩散模式的灌浆形式较为流畅,并且压力分布平均,管路不易阻塞。水利电力大坝的接缝施工通常压力在0.2MPa左右,在坝体灌浆前应进行分析与计算,保证灌浆的顺利开展,必须保接缝灌浆的开张度与泥浆粒径的比例,理想的开度为1~3mm,在灌浆中应控制开度的扩张。

3结语

第5篇:水利技术论文范文

1水利技术标准管理中信息化系统应用问题分析

结合当前我国现阶段水利技术标准管理工作中对于相应信息化系统的有效应用而言,虽然说已经得到了初步的落实和应用,但是在实际执行过程中却往往会出现一些较为明显的偏差和不良影响,这些问题主要表现在以下几个方面:(1)信息资源匮乏。基于水利技术标准管理工作而言,要想促使信息化系统得到较好应用,必须要首先针对较为基础的信息资源进行分析和收集,但是在现阶段的具体操作执行应用过程中,这种信息资源的匮乏表现还是比较明显的。相当多的水利工程管理工作都难以形成较为全面的信息获取,这也就给后续的水利技术标准管理工作带来了较大的限制和影响,导致信息化系统难以发挥出较强的积极管理效果。这种信息资源匮乏方面的影响和威胁可以说是当前我国水利技术标准管理中信息化系统建设最为基本的一个影响因素,需要高度关注。(2)信息资源共享存在问题。具体到水利技术标准管理工作中对于信息化系统的应用来看,其存在的问题和缺陷还表现在相应的信息资源共享上,因为信息化系统最大价值的呈现必须要重点围绕着相应的信息共享进行处理,这种信息共享在当前却面临着较多的困难,尤其是对于信息共享平台的构建,在当前还存在着较多的障碍,很难实现较为全面的信息共享功能,如此也就必然限制了相应信息资源的高效运用,导致其应用价值受损。(3)信息应用存在明显问题。在具体的数据信息应用过程中,其同样也存在着一些明显的缺陷问题,这种信息应用方面的缺陷表现主要就是因为相应的数据信息难以得到较为理想的分析、汇总和处理,如此也就影响到了各类信息资源的应用价值,对于数据资源的应用不够重视,限制了数据信息价值的呈现。当然,对于这种数据信息资源的有效应用来说,往往还会受限于相应的数据信息应用技术手段,其技术支持难以达到理想的作用效果,同样也必然会导致数据信息难以合理运用。

2信息化系统在水利技术标准管理中的应用

具体到水利技术标准管理中对于信息化系统的落实应用来说,因为其确实表现出了较为理想的积极作用效果,相应的实用性和先进性较为明显,相对于传统的水利技术标准管理手段来看,其存在着较为突出的价值,因此,重点加强对于信息化系统的构建也就显得极为必要。在相应的水利技术标准管理信息化系统的构建中,必须要切实把握好以下几个方面的关键内容和要点:(1)明确各个功能模块。对于水利技术标准管理信息化系统的有效构建来说,必须要首先明确相应的功能模块,围绕着相应的管理需求进行分析,如此才能够较好规定该信息化系统中需要设计的相关功能模块,并且确保这些功能模块能够发挥出相应的积极作用和效果。结合当前水利技术标准管理工作的基本需求而言,相应的信息化系统应该具备以下几个方面的具体功能模块:立项模块,主要就是完成对于相应水利技术标准的提出,明确大体的技术标准;起草模块,主要就是针对相应的立项内容进行具体细化,起草具体的技术标准内容,促使其能够较好解释相应的技术标准;征求意见模块,主要就是广泛征求意见稿,进一步完善相应的技术标准;审查模块,将相应的技术标准送达相关单位进行审稿;报批模块,审查技术标准,不存在问题后就可以通过审批;模块,主要就是针对审批完成的技术标准进行,供人们查询应用;备案模块,针对技术标准相关数据信息进行记录保存;宣贯模块,针对技术标准的宣贯内容进行处理,促使其能够被查询和应用;实施模块,主要就是针对技术标准的落实效果,及其存在的问题进行解析记录;复审模块,结合技术标准应用状况进行复审,将复审内容及其流程进行重点记录保存;监管模块,监督管理技术标准的应用状况,并且促使其具备可查询效果;变更模块,针对相应的技术标准所有变更信息进行记录保存。(2)做好水利技术标准的流程管理。针对整个水利技术标准管理的基本流程进行具体管理和控制同样也应该在信息化系统中得到较好的体现,尤其是对于各个流程的基本执行时间以及具体内容,更是应该在信息化系统中得到较为全面的记录和保存,促使其能够较好维系相应的数据信息完整性和可查阅特点,如此才能够有效提升水利技术标准管理中涉及到的各项功能。这种水利技术标准管理中的流程相关内容可以通过流程图的方式进行呈现,如此也就能够较好提升其数据信息的直观性和可靠性效果。这种流程管理在各个方面均能够得到较好应用,比如对于起草模块的运用如下图1所示:月报表管理。基于这种信息化系统在水利技术标准管理中的有效应用来说,还需要重点针对相应的月报表进行有效管理,这种月报表的设计需要重点围绕着月报表的基本内容和相关板块进行全面分析和设计,促使其能够在月报表的形成中体现出较为理想的可查性。这种月报表的设计应该促使其综合体现所有的数据信息内容,尤其是对于月报表中涉及到的各项基本内容,及其进度状况,更是需要进行详细统计记录,如此也就能够体现出信息化系统的综合作用效果。

3水利技术标准管理信息化系统的技术支持

对于信息化系统在水利技术标准管理中的有效应用来看,还需要重点关注于相应的技术支持,这种技术支持主要就是指水利技术标准数据库的构建,该数据库的构建必须要重点围绕着上述相应的功能需求进行重点分析和设置,并且促使其不仅仅具备数据信息保存和记录功能,还需要从查修以及修改方面具备较为便捷的应用效果,进而才能够提升水利技术标准管理信息化系统的应用价值。

4结语

综上所述,对于信息化系统在水利技术标准管理中的应用来看,其在当前仍然表现出了一定的问题和缺陷,这种问题表现也就需要在今后的水利技术标准管理信息化系统构建中围绕着相应的系统模块及其具体功能进行全面分析,切实提升应用实效性。

作者:孟庆婕 单位:中国水利水电第十三工程局有限公司

参考文献

第6篇:水利技术论文范文

1 防渗灌浆技术 

灌浆技术是通过高压喷射灌浆技术是借助高速射流(水、浆液或空气)直接冲击、切割、破坏、剥蚀原地基材料,受到破坏、扰动后的土石料与同时灌注的水泥浆液发生充分的掺搅混合、充填挤压、移动包裹至凝结硬化,从而构成坚固的凝结体,成为结构较密实、强度较高、有足够防渗性能的构筑物,以满足工程需要的一种技术措施。帷幕灌浆技术是在水利工程中重要的技术措施,帷幕灌浆主要是对水库坝基进行加固处理,对于减小大坝渗漏至关重要。 

2 高压喷射灌浆技术在水库除险加固工程中的应用 

2.1高压喷射灌浆特点 

在传统的化学注浆法中进行改进,结合物理原理,演变成为高压喷射灌浆法。这种技术的施工过程首先要对灌浆地面进行打孔,将连接喷射头的输送管插入孔内,对灌输装置内施加20M帕以上的压力,触动开关,喷射出来的材料与破坏土质混合,形成新的加固材料,凝固在表层,达到除险加固目的。这种技术使用的原料浆液价格底料方便采取,喷射点集中,土质不易流失,使用设备简单便捷,不需要大型运输工具,运用物理方法进行材料送达,对周围生态环境不会产生影响。灌输孔尺寸结合实际情况拟定,不受限制,不会出现爆破大面积塌方的现象。 

2.2 调制高压喷射灌浆浆液 

浆液调配的主要材料是水泥,结合不同水库的实际险情情况,添加适量的外加剂。浆液中不能存在大颗粒物质,水与粘土的比例要经过科学计算。在混凝土浆液中添加减水剂或者促进凝固材料时,要先了解好其酸碱度和化学性质,避免出现与水库修筑材料发生腐蚀反应,形象结构稳定性。 

2.3 高压喷射灌浆技术要求 

运用高压喷射技术进行加固只需要在损坏的结构上钻取一个30mm至50mm的孔,这一过程看似简单实际操作时要格外小心,前期需要做好精准的测量划线,对作业时间严格控制,避免出现灌孔过深或者纵线倾斜的现象。有些区域需要连续加固,对孔的分布要科学合理。确保高压设备连接牢固再进行操作,按照施工顺序执行。新形成的加固层位置与喷射时喷头移动范围有关,要求技术人员有土木工程建筑的相关知识,了解设备性能,应对突发情况及时做出变动。实施多个运输管共同工作时,要选取合适的角度,对灌孔依次进行标记,避免出现重复操作的情况,确保加固工作高效稳定进展。 

2.4 高压喷射灌浆施工质量控制 

水坝加固除险工作完成后,需要对施工质量安全进行检验,混凝土浆液材质在注入后需要一段养生时间,通过这一时间磨具的封存,加固层可更稳固,水泥材料变的更坚固,所以安全监测工作不能在灌浆完成后即刻开展,要在达到规定时间后拆除塑料隔离层再进行,对施工进行全面检查。包括灌孔的分布位置,质检人员要有自己的科学标准,以此为依据展开工作。灌浆加固点多时,要进行抽样检查,随机选取总数量百分之七的孔进行测量,记录下孔的直径、纵向是否垂直,注入口呈不规则圆形或者处理粗糙均属于不合格现象。灌浆是否达标主要检测其凝固后结构的密实程度,将一定比例的混凝土材料延灌孔注入,额定时间内其流量如果超过比较量,则需要二次维护,灌浆施工不合格。完成工作任务后要对灌孔进行密封,检测工作随着工程开展阶段进行,确保各流程符合标准再进行收尾。 

3 帷幕灌浆技术在水库除险加固工程中的应用 

帷幕灌浆技术是将浆液直接注入在水库斜坡出现裂缝的建筑材料中,形成连续的保护结构,在使用中水就不会透过裂缝渗漏。帷幕顶部直接与坝体相连接,直至不接触水面的岩石层,形成一个保护系统,减小基层渗透水对坝边坡产生的压力。 

(1)钻孔间距。帷幕灌浆在钻孔时应按照设计规定,逐渐减小孔间距离,沿着破损表面横坐标逐步加密,距离控制在1.8m至2.2m之间。如果是双排或者多排孔在测量分布中,多数先对最下层进行施工,再钻取上层灌孔,完成后进行测量,选取中间位置实施多孔的安放。 

(2)帷幕灌浆材料。选取材料时要参照国家出台的标准,使用符合强度要求的浆料。设计人员要结合实际情况对灌注材料进行调配,适当的使用化工原料,但不能对水体产生污染。先将搅拌好的材料取少量灌入实验孔中,确保安全符合要求再开展施工。 

(3)施工工艺流程。进行帷幕灌浆要先设计孔位、钻孔,对有害裂缝进行清理,将施工部位与水隔离,前期准备工作完成后再进行材料的制作,这一过程要经历较长时间,正式实施灌注时要再次检查裂缝处是否洁净,不能留有垃圾。灌浆结束后要经历一段养护时间,再进行验收,确保其牢固程度符合标准后将灌孔密封,通常采用机械设备进行后期工作,条件不允许的现场也可人力进行代替,但要保证牢固性和平准度,不能出现缝隙。整个过程需要工程技术人员现场指导,按顺序进行。 

3.1 冲洗压力 

一般而言,冲洗水压是灌浆压力的80%,在压力值大于1MPa的时候,选用1MPa;冲洗风压是灌浆压力的50%,在压力值大于0.5MPa的时候,选用0.5MPa。 

3.2 裂缝冲洗 

冲洗的时候,当清水流出10分钟后予以停止,并且总时间不得少于30分钟。对于返水达不到澄清标准的孔段,需要继续冲洗,保证孔内残留杂物厚度不可大于20cm。在邻近孔有灌浆操作或者灌浆结束不超过20小时的孔,不可以展开裂缝冲洗操作。 

3.3 制浆方式

根据有关设计规范标准,必须对帷幕灌浆制浆材料予以称重,保证其称量误差不得大于5%。在制浆的时候,需要对掺加剂、投料等进行严格控制。在制浆的时候,一定要确保搅拌均匀,并且测定浆液密度与粘滞度等参数,同时做好记录。在拌制细水泥浆液的时候,需要加入一些减水剂,并且借助高速搅拌机进行均匀搅拌,其转速不得低于1200r/min,时间需要通过试验予以确定。在使用浆液之前,需要进行筛选,一般为80μm方孔,其筛余量不得超过5%,水灰比为0.5:1,输送流速在1.4-2.0m/s之间,输浆压力在0.2-1.0MPa之间。确保浆液温度在5-40℃,低于或者超出标准的浆液视为废浆。 

3.4 帷幕灌浆施工质量检查 

在检查帷幕灌浆施工质量的时候,主要在灌浆结束14天后展开,其检查孔数为总孔数的10%。在检查灌浆质量的时候,一定要严格按照监理工程师要求,将检查孔设置在帷幕中心线上;对岩石破碎、大孔隙注入量、断层等复杂位置进行检查,等等。在进行压水试验的时候,可以在灌浆结束后根据监理工程师的指示,确定检查时间,并且按照其规定流程予以严格检查。承包施工单位需要在灌浆结束后,根据监理工程师的研究,整理有关资料,并且提交给监理工程师,为质量检查工程提供便利条件。 

4 水库除险加固中灌浆技术的应注意的事项 

冒浆是指在灌浆过程中浆液在坝坡、地面或库区底部流出或喷出采取在冒浆点加覆盖、降低灌浆压力、间断灌浆等措施。串孔是指在某一孔口正常灌浆时,浆液从相临孔口返出,说明钻孔在地下有通道相通及时填堵被串孔,待灌浆孔高喷灌浆结束后,立即进行被串孔的扫孔,进行高喷灌浆或继续钻进,凡经特殊处理的渗漏段,侍孔口返浆后均将喷射管下至原不返浆的最下位置,再进行正常喷射(复灌),确保防渗墙墙体质量。 

第7篇:水利技术论文范文

施工的具体步骤与其他建筑工程类似,搅拌、运输、浇筑、养护是水利水电工程中混凝土施工技术的主要步骤。由于水利水电工程建设的特殊性,目前的混凝土搅拌工作都是由大型的混凝土搅拌设备完成的。而由于大部分的水利水电工程的区位都比较远远,这对混凝土运输工作提出了挑战,在运输过程中要尽量的缩短运输时间和运输距离,尽量避免装料过满,并且保证运输工具的严密性。在进行混凝土浇筑的时候,一定要确保浇筑面的清洁度,不能留有杂物、碎石等,对钢筋、模块进行浇筑之前要对钢筋、模块的稳定性进行检查。另外,在混凝土浇筑的过程中,还要保证振捣工作的正确性和高效性。最后在混凝土浇筑完成之后,要及时的采取养护措施,保证混凝土施工质量。

二水利水电工程中的混凝土施工技术分析

1混凝土配合比例优化技术

混凝土的配合比例是影响混凝土施工质量的主要因素,在水利水电混凝土施工过程中,要根据混凝土配合比标准和工程相关设计要求,对混凝土配合比例进行优化。首先,要保证混凝土整体质量和品质达到相关标准,并且在这个前提下,尽可能的降低混凝土的水热化。其次,要根据工程的实际施工情况,在保证混凝土施工和易性的前提下,采取合理的措施尽可能的保证混凝土施工对和易性的要求,例如对砂的使用量进行控制,能够有效地防止混凝土变形。另外,可以根据实际情况合理的降低混凝土配比中水的用量,进而对混凝土的凝固性进行合理的控制。

2混凝土施工作业相关技术

首先,要在施工开始之前对水利水电工程中的混凝土施工的相关参数进行计算,例如混凝土的温度、收缩应力等,并且按照水利水电工程的设计要求对混凝土的升温最高值、混凝土内部和外部之间的温差以及混凝土降温的速率等进行计算,进而能够将混凝土控制进行量化。其次,在混凝土浇筑环节,要根据实际情况选择合适的浇筑方式,一般水利水电工程中的浇筑方式有两种,一种是分层浇筑方式,一种是推移连续浇筑方式。在浇筑施工过程中,一定要控制好混凝土浇筑的时间间隔,不能太长也不能太短,要保证浇筑的连续性。最后在混凝土模版的施工过程中,要对模版的刚度和稳定性都进行科学的、认真的计算,同时要做好相应的养护工作实施方案,要在确保混凝土达到足够的刚度和强度之后在进行拆除施工。

3混凝土施工中的养护技术

水利水电工程中的混凝土施工技术养护要综合考虑到混凝土施工的性能、特点以及水利水电工程的特点,要在保温和保湿的双重标准下对混凝土进行养护。一般情况下,采用麻袋或者是塑料薄膜对混凝土施工面进行覆盖是比较常用的混凝土养护保温措施,有的时候也会搭建挡风、遮阳保温棚的方式对混凝土进行养护,这种方法与前者相比,相对要耗费比较大的成本,因此,通常还是采用麻袋和塑料薄膜覆盖的方法对混凝土进行养护。

三水利水电工程中混凝土施工质量的控制要点

1规范混凝土原材料控制和管理

首先,要根据国家建筑材料的相关标准选购混凝土施工材料,要控制好混凝土骨料的大小,实现骨料与水泥的有效结合。要杜绝因个人私利或者是企业恶意竞争造成的材料不达标问题,要保证混凝土骨料的级配以及水泥的品质达到工程设计的相关要求。其次,要加强混凝土施工现场的材料管理工作,相关技术人员一定要对进入到现场的混凝土材料进行认真细致的审核,并且要做好材料实际用量的统计和记录工作,要在保证水利水电工程混凝土施工质量的前提下,将施工用料降到最低,进而降低工程成本,保证工程的经济效益。

2规范水利水电工程混凝土施工工艺

混凝土施工工艺控制是控制混凝土施工质量的有效措施。首先,要对混凝土的配合比例进行严格的控制和管理,混凝土施工设计人员要深入到水利水电工程的施工现场进行深入的调查,针对工程的实际情况,科学、合理的对混凝土配合比例进行设计。其次,要根据水利水电工程的地理位置、施工地质条件、施工环境等因素采取适合的混凝土浇筑技术,并且要加大对混凝土施工温度的控制。一般来说,28℃是混凝土施工温度的临界点。另外,一定要严格按照相关规定对混凝土进行振捣,要保证钢筋和模块之间的紧密结合,并在浇筑完成之后采取持续洒水的方式对混凝土进行养护,加强养护措施。

3重视水利水电工程施工现场环境的分析预测

在施工开始前,要对水利水电工程的施工现场环境进行分析预测,并制定相关的预防措施,尽可能的降低环境因素对混凝土施工产生的不利影响。一旦因环境问题,如温度过高并且持续时间长、湿度过大或者是连续降水等等,要及时的采取应对措施,将破坏度尽可能的维持在能够承受的范围内。并且要注意经验总结,当出现类似问题的时候能够做到有的放矢。

四结语

第8篇:水利技术论文范文

水利水电工程的施工过程非常复杂,受地质条件和地形的影响较大。因此,在建筑工程中,必须合理施工、因地制宜,施工人员和设计者要细致地探测现场的地形、地貌,并在条件允许的情况下实行现场试验,充分保证设计方案的可行性。对水利水电工程来说,基础工程属于一项隐性工程,因为施工人员并不能保证施工质量,质量检测员也不能合理评价工程质量,这样质量问题就很难被人们察觉。通常情况下,这些问题都是导致工程质量下降的主要原因。除此之外,水利水电基础工程的施工工期特别短,施工时间与周围河流的汛期有紧密的联系,只有在枯水期施工才能保证工程质量。只有在机器设备和施工人员合理施工的情况下,才能最大限度地提高工程效率。

2基础处理技术的要求

水利水电工程基础处理技术的目的是为了保证施工的质量水平,因此,施工人员必须遵循基础处理的技术要求。在水利水电施工之前,设计者要根据地质地形完成设计规划,整理出技术施工的文件,使工程施工有据可循,充分做好前期准备工作,合理预测其中可能出现的各种问题,并提出应对方案。在水利水电工程建设过程中,要长期保护和复核水位的基准线和定位孔,在保证复核质量检验程序完善的情况下,可以反复试验。在保证施工安全的基础上,规范施工人员的操作,使其符合规范的要求。在施工前,要对施工人员进行严格的培训,按照施工方案依次施工,并将水利水电建筑场地周围的植被和建筑物按照规定处理掉。在施工人员完全掌握现场水文、地质条件的情况下,提出应对突发事件的有效措施。

3基础处理的重要性

水利水电工程是一项公益事业。为了为人们提供更好的生活服务,我国加大了对水利水电建设的管理力度,不断完善工程体系。为了保证施工质量,要严格遵循相关施工标准,选择先进的技术,采取行之有效的管理方法,加强对基础质量的重视程度。在水利水电基础施工中,要注意以下问题:①要想水利水电基础和地基的强度可以承载整个建筑的质量,就要考虑工程的耐侵蚀性、耐久性、抗冻性和防潮性;要想工程基础的每一项特性都能满足标准的要求,就要增强地基的稳定性,就要留出足够的工作面,保证施工可以顺利进行。②在建筑施工中,为了防止基础结构被破坏,要根据基准灰线切割,将其切成1个槽形的轮廓线,并沿着轮廓线施工。在建造地面排水设施和降低地下水时,要根据地质资料,充分考虑尺寸的大小,保证施工质量。③我国地缘广阔,地貌地形多样。在水利水电选址中,不能保证所有的地基选址都在条件良好的地质区域。由于水利水电建设受自然环境的影响较大,所以,经常会遇到比较差的地基,很难保证建筑的稳定性。其中,主要的不良地基有软弱黏性土,俗称软土,它是由具有高压缩性的淤泥质土和淤泥组成,这类土质主要是黏性沉降物,所以,其承载力低,主要分布在江河冲刷地;杂填土是由生活垃圾土、工业生产垃圾土和建筑垃圾土堆积而成的,经常出现在矿区和传统居民区;湿陷性黄土的土质亲水性强,本身的自重应力大于其他土质,所以,它的含水量高,容易沉降,主要分布在黄土高原区。而在水利水电工程中,最常遇到的就是软土地基。

4基础处理的措施

4.1强化对经济运行和考核制度的管理水利水电工程需要严格管理其经济运行情况,这样才能确保施工程序的正常推进,并按照计划依次实施。所以,在施工内部要建立有效的基本准则和生产运行指标,既能在团队中树立有效的管理制度,也可以约束施工队员的行为,合理地管理施工队内的资金,保证经济运行和施工安全,在一定程度上降低施工成本。

4.2提高施工人员的技术水平在水利水电工程施工中,依靠的主要因素是人。为了保证工程的质量和安全,要坚持“以人为本”的原则,增强施工人员的责任感,提高其技术水平,确保每个环节都符合相关规定,不但在保证质量的前提下缩短施工时间,还能有效地节约成本。将先进的改良技术应用到工程中,健全工程管理,对整个施工的有效运行有非常重要的作用。除此之外,还要建立质量监管部门,根据施工目的和具体情况提出具体的施工要求,监督机器设备的维护和检修,使机器处于最佳的工作状态。同时,要实时监控施工人员的工作情况,根据大家的专业水平进行培训,在确保安全的工作环境下实现技术创新,保证建筑工程获取最大的经济利益,为我国的水利水电建设作出贡献。

4.3对水利水电基础技术的探索

4.3.1全新的施工方法对全新的施工方法来说,一方面,要想基础的硬度和地基能够承受住建筑上的全部荷载,就要先保证基础的抗冻性、耐久性、耐侵蚀性和防潮性。同时,为了保证地基的稳定性,要预留出足够的工作面,而且地基的变形值范围要在规定的参考值内,避免建筑物出现倾斜、开裂等情况。另一方面,对于相对较浅的基础来说,可以沿着基准灰线将其切割成1个槽边的轮廓进行施工作业。而排水系统和地下水位的处理,要结合具体挖方尺寸和施工场地的情况来定,这样才能保证地基结构的完好。

4.3.2加强软土地基的方法加强软土地基的方法主要有以下3种:①挖除置换法。适当地挖除建筑物下面的软土层,并将其填换成低压缩性和防腐蚀性的散粒材料,比如卵石、粗砂、煤渣和石屑等。②重锤夯实法。用带有自动脱钩设备的履带起重机把重锤吊到指定的高度,并做自由落体动作,利用冲击力把土夯实。③排水固结法。人为提高土层的承载力,在其内部形成垂直或水平通道,在自重的作用下加速排水、固结,提高土层强度。

5结束语

第9篇:水利技术论文范文

根据水利水电实际施工的需求制定相关的计划方案,保证技术有效合理的进行,防止发生不合理计划现象。施工方可根据工程的实际情况制定相关计划,保证各个计划之间形成相互制约及依存的关系。计划的编制应该与进度、质量及成本三方面进行综合评定,且所有计划均需以预期目标为基准,对各项内容进行规范。所以在水利水电工程中加强对混凝土施工的管理,便应科学合理地制定出计划目标,在此前提下进行总体施工安排。加强混凝土施工管理是要根据水利水电工程实际情况制定出客观科学的计划,为计划的实施和运作创造良好的条件,使得进度、质量、成本等方面均得到有效的控制。其在提高施工方经济效益及其健康发展中具有非常重要的意义。

二、混凝土施工管理措施

1.建立科学的指标体系

施工方需结合自身的企业特点及情况,编制各类的计划方案,其对未来生产经营活动安排有一定的辅助作用,各种计划相互结合便可称为相互制约、相互依赖、相互支持的计划体系。计划在编制的时候一定要遵循合理原则,其对工程质量、工程进度及工程投资均有非常大的影响。每类计划均是以指标来衡量工程中的具体内容和量的标准,指标是一种衡量目标的方法,计划指标之间也是有联系的组成指标体系,计划管理的核心是建立科学的指标体系,对计划进行加强管理便是对计划目标进行科学预定,所有的计划编制及实施均需围绕目标实现。

2.防止计划安排出现不合理现象

首先施工方要有计划的意识,每一项工作均需要根据实现目标来制定出相关的详细的措施,同时还需努力创造条件,实现计划。在计划完成前提之下,对每一项施工部分均需要进行层层分解、工序倒挂,同时制定出每项施工项目的周计划。其次计划在制定的时候应该符合水利水电工程的实际情况,不可因为加快施工进度,而实现不了计划目标。最后在为水电水电工程制定混凝土施工管理计划的时候,应考虑到显示突发状况。计划定制完成后必须实施和观察,在执行过程中应始终把握工程生产经营目标,控制好施工工作中的每个问题及项目,以便适应情况变化,保证混凝土施工管理计划实施的稳定性和连续性。

3.做好计划体系工作

在水利水电实际施工工作过程中,每个计划必须是实事求是、科学严谨的,否则不仅会对计划的运作有一定的影响,同时还会给企业造成一定的经济损失,妨碍企业正常的发展。例如施工方按照施工计划进行施工,但发现计划存在不合理现象,便会使得施工方在施工的过程中因不了解先后的顺序,对工作进度不了解,那么便会出现互相干扰、互相影响的现象。

4.全面质量管理

全面质量管理就是通过对施工过程中所有因素进行综合全面的管理。所以应该改变传统的管理模式,将传统事后检验模式变成以预防为主的检验及因素管理。将传统分散管理模式转变成集中管理。且在施工的过程中不断完善和改进质量控制措施。强化施工人员质量意识,并有效地推进基础设施建设,最终实现经济双赢。对此应该通过培训、讲解等必要的方式使施工人员意识到基础施工建设的必要性及其重要意义,加强施工人员的责任意识,并将工程质量控制贯穿在水利水电工程全过程中。加强质量控制、进度控制、施工成本控制,并做好成本预测,合理优化施工具体方案,在管理、技术、组织等方面提高的基础上实现最大经济效益。特别是在混凝土施工管理过程中,因灌溉加强质量管理、技术管理、计划管理、成本管理之间的制约及联系,提高混凝土管理质量,为施工方提供可靠保障。搞好全面质量必须展开一系列的工作,是开展适量管理活动、建立质量体系的依据和立足点。首先企业标准化工作的中心是经济效益,以企业的经营活动、技术、生产等内容制定符合标准的一种组织性活动。第二计量是保证量值准确的重要标准,其具有的重要任务便是统一计量单位制度,组织数值的正确传递,保证量值统一的工作。搞好计量工作的同时还需按照生产设计保障施工工程质量,精确地计量出检测设备的日常管理,且应正确及时处理不合格计量设备。质量信息是进行质量决策的依据,是改善施工质量的直接依据及最原始的资料,是正确的认知到因素的变化与工程质量变化间的关联,进而进行量控制的最基本的依据。若是使得质量信息在施工方管理活动中有一定的作用,应使质量信息满足全面、准确、及时、系统的要求,做好全面管理工作。建立质量责任制是企业建立经济责任制的重要环节,不仅需要明确每个施工人员的具体责任、职责及权限,最好做到人人有专责,办事有标准,考核有奖罚。人员在施工过程中是非常重要的要素,若是想要全面提升施工质量,那么首先应把好质量教育的关。通过质量教育工作不断提高企业全体职工质量意识,熟练掌握和运用质量管理技术、方法、理论。同时还需注重教育形式的多样化和系统性,找出适合施工方内部的方法。

三、混凝土施工管理技术要点

水利水电工程中进行混凝土施工管理中施工工艺技术便是其管理的要素之一。施工技术是为了保障工程质量中较为关键和基础的一项。若是没有技术,那么便谈不上施工。混凝土施工工艺技术中包括温度控制、模板工程、安装工程、浇筑工程等等,其在工程施工中均占有重要的地位,其与工程的经济高效、施工质量及安全进度之间有非常密切的联系。混凝土施工过程中技术管理是非常重要的一点,其包括设备、资料、人才、规程等要素管理,及对技术学习、开发改造、运用、评价等技术性活动的管理。技术在施工的过程中需要最大限度地发挥其自身的作用,其不仅会体现在技术管理层面上,同时体现在技术自身水平方面。技术管理在水利水电工程混凝土施工管理中具有非常重要的价值,所以应该认真地发现和对待技术管理过程中的问题及缺陷,并选择最直接最有效的方法解决,特别是技术交底工作、质量检验及技术开发等方面的工作。若是技术在开发的时候不积极,那么对工程施工及技术水平提高便会有不良的影响。若是技术交底不完全或者不够彻底,那么便会导致工程施工人员对整个施工状态没有充分的认知,无法发现事故或者避免突发事故。若是检验不合格不规范,那么对工程质量有直接的影响。所以需强化业绩考核制度及责任制,奖罚明确的同时提高施工质量及加强施工管理。与此同时需要注重技术的创新及改造,最大限度地降低工程的投资成本,提高工作效率及质量的同时,也缩短了工程施工工期。有计划有组织地进行施工安排,并充分合理地利用现代化的先进技术,以最快实现施工节能耗能、安全可靠、经济高效提供有力的技术支持。

四、小结