公务员期刊网 精选范文 矿山工程数字化范文

矿山工程数字化精选(九篇)

矿山工程数字化

第1篇:矿山工程数字化范文

[关键词]自动化;信息化;数字矿山

中图分类号:TD67 文献标识码:A 文章编号:1009-914X(2016)21-0377-01

信息技术的快速发展和浪潮般的推广应用,为矿山企业带来了机遇,也带来了压力,“数字矿山”应运而生。数字矿山是以计算机及其网络为核心手段,实现矿山信息的获取、存储、传输、表述、深加工及其在各个生产环节和管理与决策中的应用。它是一个由多个相互关联的软、硬件分(子)系统组成的庞大系统。

数字矿山的建设开发过程,称为矿山数字化。矿山数字化过程是综合运用GIS(地理信息系统)、遥感、遥测、网络、多媒体及虚拟仿真等技术,建设矿山资源开发利用、信息采集、动态监测管理和辅助决策服务系统的过程。它是地理、资源、生态环境等复杂系统的数字化、网络化、虚拟仿真,具有优化决策支持和可视化表现等强大功能。

矿山数字化的最终目标,是应用矿产经济、数学地质、信息技术的原理与方法,通过计算机及软件,把矿床地质、矿产开发等有关信息,以地理坐标为标准有机集成起来。并通过数学分析研究,建立这些数据的三维空间联系,实现现实矿山实体的数字化、可视化,从而解决矿山生产动态管理、生产方案优化决策、矿山生产规划、矿床边深部找矿增储、资源的合理开发利用等技术问题,以便减少资源的浪费和环境污染,提高矿业开发的社会经济效益。

1 数字矿山目标及发展现状

传统的采矿工业大多数都是以人工作业为主,不仅采矿的工作效率不高而且还经常发生采矿人员伤亡的安全生产事故。为了更好地解决矿山在日常生产过程中所面临的问题,坚持以人为本的工作理念,运用现代高新技术,不断完善我国数字矿山的建设。数字矿山的主要目的便是为了更好地解决传统采矿工艺存在的问题以及弊端,使信息资源的综合利用与矿山的安全生产相结合,保证整个采矿过程绿色安全且高效节能。

我国的矿山企业受传统采矿工艺的影响比较大,矿山企业虽然也在发展自动化建设和信息化建设,然而都受到传统思想的束缚,不敢冒险尝试新型数字矿山的建设,严重影响了数字矿山的建设。在国家和地方政府的不断重视和扶持下,现目前我国的数字矿山建设正在如火如荼的进行着,并在不断研究和开发各类新的开采技术,矿山的开采工艺也在不断朝着数字化、智能化方向发展,大大提升了矿山企业的生产效率,带来了巨大的经济效益和社会效益。

2 数字矿山自动化和信息化建设

数字矿山系统由于容易受到自然条件和人为因素的影响,矿山系统的建设难度很大。自动化、信息化数字矿山不仅应当具备较强的调节能力,还应当具备较强的控制能力,使信息资源的综合利用与矿山的安全生产相结合,保证整个采矿过程绿色安全且高效节能。

2.1 矿山自动化

开采设备的自动化,不仅能够提高矿山的开采效率,还能够有效地改善企业矿山的生产条件,降低开采成本,保证采矿过程的安全。此外,开采设备的自动化也是无人采矿和数字采矿的重要实现手段。现目前我国采矿企业应当摒弃低效率、高强度的传统矿山开采方式,不断发展自动化开采技术,在提高资源利用率的同时,保障矿山开采人员的人生安全。尤其是在开采难度高和开采危险大的矿山开采工作中,自动化开采的优势更大。

现目前,我国大多数字矿山都在使用自动控制技术、振动检测技术、自动诊断技术以及自动识别技术等一系列自动化生产技术,使我国矿山的智能化生产更加完善。我国数字矿山近几年也在不断发展,在矿山GP定位、三维地学模拟以及矿山地理信息系统等自动化生产方面都取得了一定的成就。此外,数字矿山的自动化也应当包括运输自动化。数字矿山的自动化运输系统能够对开采矿石进行自动运输,不仅大大节约采矿的运输成本,还能够避免安全事故的发生,提高矿石的运输效率。

2.2 矿山信息化

信息化信号的传输方式有两种:一种是模拟信号传输;一种是数字信号传输。其中模拟信号在抗干扰性方面的能力比较差,模拟信号一旦在传输过程中遇到噪声干扰,会对模拟信号的传输造成一定的影响,并且模拟信号受到影响后,很难自动恢复正常。相反,数字信号在抗干扰性方面的能力比较强,在传输过程中遇到噪声干扰,数字信号会通过自动整形再生来恢复信号的正常传播。此外,数字信号在进行传输时不会受到距离的影响,并且具有相当高的保密性能,能够很好地保证传输信号的质量。若数字信号的传输基于光缆,则数字信号传输的优势将得到最大发挥。由于矿山的需要传输信号的距离比较远,加上采矿区域内给中机械的噪音较大,因此,矿山系统要实现及时、快速以及准确的信息传输,信号的传输方式应当首先数字信号传输。数字信号能够快速、高效地将矿井下面的实时采矿场景传输给地面信息控制中心,也能够将控制调度中心的各种控制调度信息快速、高效地传输到矿山的各个采矿车间或部门,不仅能够大大缩短传递信息时间,还能够准确地控制矿区个采煤部门或车间的协调运作,提高矿山的生产效率。

3 建设信息化、自动化数字矿山的意义

随着科技的不断发展,发展现代化数字矿山是采矿工业未来的发展方向,建设信息化、自动化数字矿山有着非常重要的意义:

3.1 建设信息化、自动化数字矿山能够提高采矿企业的综合竞争力

建设信息化、自动化数字矿山能够使企业的核心采矿技术得到不断发展和完善,也能促进企业的基础技术和核心技术的不断创新,能够使采矿企业在国际竞争中展现良好的企业形象。

3.2 建设信息化、自动化数字矿山能够不断提高企业的生产效率

建设信息化、自动化数字矿山,能够使企业在实际采矿工作的运转效率不断提高。信息化、自动化数字矿山把传统的采矿工作的人工操作变为了现代高技术含量的机械化操作,在提高企业生产效率的同时大大降低了采矿工作人员伤亡的安全事故。

3.3 建设信息化、自动化数字矿山能够有效降低企业的各项损失

建设信息化、自动化数字矿山能够大大减少或避免采矿工作中发生矿山灾害的风险,防止采矿工作中各类安全事故的发生,保证矿山的整个采矿工作的高效性、高产性以及安全性。矿山在采矿过程中一旦发生安全事故,信息化、自动化数字系统能够紧急产生相应的防护措施,减少矿山工作人员的伤亡,保护矿山开采设备,降低矿山的经济损失。

4 信息化、自动化数字矿山建设中存在问题及解决方案

我国的数字化矿山经过十几年的发展,取得了一定的成就,然而我国的数字化矿山在建设中仍然存在一些问题:

4.1 数字矿山出现信息孤岛的现象比较严重

现目前我国的很多数字矿山都没有完整的矿山数据收集以及数据共享系统,导致矿山的各类数据分析、地质状况以及对相关设备设施的控制不能实现数据共享,使数字矿山各个系统之间存在严重的信息孤岛现象,浪费了矿山的信息资源。对此,矿山企业应当加快数字化控制软件的开发和研究,不断优化和完善数字矿山系统,加强各个矿山之间以及矿山各个设备之间有效的数据共享,合理利用矿山数据资源,提高矿山的生产效率。

4.2 数字矿山技术以及生产设备落后

现目前我国很多数字矿山由于资金问题,无法引进新的技术和设备,导致我国数字矿山的技术以及生产设备比较落后,严重阻碍了数字矿山技术的创新和矿山系统的优化和完善,制约了我国数字矿山的发展。对此,数字矿山应当加强矿山关键技术的研究,培养和引进更多的数字矿山专业技术人员,加强对数字矿山的基础理论知识以及核心技术的开发研究,不断改进和创新数字矿山开采技术,优化和完善数字矿山系统,提高数字矿山的生产效率,为企业带来更大的经济效益。

5 结语

随着科技的不断发展,发展现代自动化、信息化数字矿山是我国矿山未来的发展方向,对矿山企业有着十分重要的意义。数字矿山企业应当不断创新矿山核心开采技术,不断完善和优化数字矿山系统,使数字矿山的日常开采活动正常、高效进行,为矿山企业带来更大的经济效益,推动我国数字矿山的发展。

参考文献:

[1]姜亮.浅谈煤矿企业信息化及数字矿山建设[J], 科技致富向导,2013(15):176―246.

第2篇:矿山工程数字化范文

【关键词】数字矿山;矿山测绘体系;数据获取;数据加工;矿山应用服务。

1 矿山测绘的意义

随着矿山资源勘查开发水平的提高,有力支撑了国民经济建设,并加快了社会发展的步伐,然而,在新集一矿矿业发展过程中也存在诸多问题。通过全矿开展的矿业权实地核查和矿产资源利用现状调查项目,实现了对本矿矿产资源情况进行调查摸底的目的,在这一过程中,矿山测绘提供了可靠的基础性数据。作为矿产勘查开发的基础技术支撑,矿山测绘有着举足轻重的作用,如:矿山控制测量、矿山规划设计、地形图测绘、采掘工程平面图测绘、矿山开拓工程放样、土方测量计算、岩层及地表边坡移动沉降监测等等。内外业测绘成果的质量直接影响了矿山规划、开拓设计、生产建设、施工安全及各类矿山报告的编制等。因此,建立有效的矿山测绘体系、组建专业矿山测绘技术队伍、引进先进矿山测绘仪器是当前发展矿山测绘、建设数字矿山的先决条件。

2 矿山测绘体系的组成

随着数字地球和数字中国等数字化的概念和体系的不断完善,数字矿山近年来也得到了足够的重视,并取得了较大发展。

所谓数字化矿山,即采用现代信息技术、数据库技术、传感器网络技术和过程智能化控制技术等,在矿山企业生产活动的三维尺度范围内,对矿山生产、经营与管理的各个环节、各生产要素进行网络化、数字化、模型化、可视化、集成化和科学化管理。根据实际应用需求,建立矿山规划设计、矿山安全生产管理、矿山应急救援指挥、矿山经营管理、矿山办公自动化等应用系统,从而保障矿山企业的安全生产与经营管理,并实现业务流程数字化,同时加工成新的信息资源,迅速准确地提供给各层次的管理者,以便动态掌握信息, 特别是矿山安全生产过程中的实时信息监测、收集、分析、预警,进而作出正确决策,实现资源的合理配置。

新的矿山测绘体系是数字矿山发展的新需要,它将为数字矿山的建设提供广阔的空间基础数据资源,新型矿山测绘体系核心内容主要由矿山基础数据获取、数据加工处理和矿山应用服务三方面构成。

2.1 矿山测绘设备仪器

矿山测绘的基础设施是保障各项测量工作得以开展的前提条件。引进先进的适合矿山生产建设的设备,如全站仪,GPS卫星接收机、移动变形监测等测量仪器,实现外业仪器数字化、自动化和智能化。除此之外,还要收集整理矿山现有的各类资料,进而转化为建设数字矿山和矿山测绘系统所需的数字化基础信息,在此基础上,建立与其匹配的软、硬件平台。

2.2 数据采集与获取

数据采集与获取是矿山测绘工作的关键所在。矿山测量主要通过矿山地面和地下三维空间的测量、定位与制图、矿体几何、储量管理、开采监督、开采沉陷观测及开采损害防护等方面的工作实现数据的采集与获取。

矿山测绘数据采集获取基本任务是:

(1)建立矿区测量控制基础, 主要采用大比例尺地形图和地籍图测绘的方式;

(2)对矿区地面和井下各工程建设进行施工测量、验收测量;

(3)通过摄影测量,对矿山生产建设中的重要环节及重要事件的影像资料进行采集记录;

(4)对矿产、土地等资源的开发和利用状况进行检测和监督;

(5)对岩层与地表移动观测进行研究, 对露天矿边坡、尾矿坝、排土场等矿山工程进行变形监测。在数据采集的过程中,矿山测绘队伍的完善、测绘技术的更新、测绘成果的质量显得尤为重要。为了保证该项工作的顺利进展,需对测绘成果数据建立严格的监督、审查和验收制度,从而为矿山企业提供优质可靠的基础数据。

2.3 数据加工处理

数据加工主要包括数据编辑、信息提取、数据综合处理等环节。将获取的图形、图像、文本等基础数据加工成生产成品数据,以满足具体应用需要。主要表现在如下方面:

(1)编辑、输出各种地形地质图、采掘工程图、矿山专用图、矿产形态图、矿产信息图等多种图件;

(2)利用获取的基础数据制作矿山专题;

(3)对矿山灾害点及重要工程监测数据进行分析评价,为留设保护矿(煤) 柱和安全开采提供资料;

(4)制定和实施矿山生产计划、规划设计等。

随着数字矿山随着矿山动态监测和数据的实时更新,空间数据库也将逐步完善、通过各种测量数据与GIS系统的对接处理,数字矿山的建设也将初具雏形,它将为矿山提供专业模拟、系统分析和应用服务等功能。

2.4 应用服务

矿山测绘成果数据经加工处理后将最终服务于矿山。结合成果图件和数据,达到灾害预警、矿区环境监测、土地复垦、环境治理与保护的目的。为矿山生产建设和决策提供基础信息支持,应用拓扑关联实现信息的空间查询、分析和输出,在开放接口的同时施以数据访问控制,服务于生产调度和指挥管理。

3 总结

矿山数字测绘体系为空间数据的获取提供系统的技术支持,基础数据来源渠道广,获取手段日益先进。GPS、GIS、遥感等测绘学科的核心技术,在矿山测量领域不可或缺。这些先进技术的飞速发展与应用,促使矿山测量取得了长足的进步,其理论研究和实际应用的不断发展和完善,必将为矿山发展做出重大贡献,随着矿山测绘体系的逐步健全及其在矿山服务中的重要体现,数字矿山的建设与发展也将得到应有的重视,引导测绘学科步入一个新的发展高度。

参考文献:

[1]王进选.数字矿山建设中的矿山测量[J].技术与创新管理,2009(5).

第3篇:矿山工程数字化范文

【关键词】数字化;信息化;自动化;煤矿

1.数字矿山的内容

“数字化矿山”最近成了采矿行业的一个热门话题,并引起了国家科技部门和许多企业的重视,是采矿业以后的发展方向。

所谓“数字化”是指利用计算机技术把电类或语音、文字或图像等非电类的信号转化成数字信号,按一定规律编码,用于信息的处理传输与应用过程。“数字化技术”是指以处理“O”、“1”为基本逻辑单元,经过数字编码、数字压缩、数字传输等信息处理技术。数字矿山提法源自“数字地球”,20世纪90年代美国首先提出“数字地球”的概念,随后便有了“数字中国”、“数字城市”、“数字政府”等等。我国煤矿地理信息系统的科技工作者提出“数字化矿井”及“数字化矿山”的概念。

数字矿山的两个层次:一是将数字矿山中的固有信息(即与空间位置直接有关的相固定的信息,如地面地形,井下地质、开采方案、已完成的井下工程等)数字化,按三维坐标组织起来一个数字矿山,全面、详尽地刻画矿山及矿体;二是在此基础上再动态嵌入所有相关信息(即空间位置有关的相对变动的信息,如储量、安全、机电、人员、生产、技术、营销等等),并找出这些信息内在的联系,组成一个意义更加广泛的多维的数字矿山。

我们认为第二层次才是完整的“数字矿山”,而“数字矿山”是需要多个学科、多个专业、高校、科研院所和煤炭企业的科技人员协同作战、长期奋斗才能实现的。

数字矿山≠矿山数字化

2.煤矿数字化、信息化和自动化

“信息化”是实质、“数字化”是表达形式、“自动化”是目的和基础。

2.1“信息化”是现代化矿井的实质

(1)现代化矿井实质上依赖对矿井地理、生产、安全、设备、管理和市场等方面的信息进行采集、传输、处理、应用和提升,达到信息增值的目的。

(2)主要内容包括信息的采集、传输、处理、信息的应用与集成(自动化)等。

(3)信息是未来煤矿企业的重要战略资源,是企业提高生产能力,保证安全,提高管理水平、市场应变能力和竞争能力的重要保障。

(4)生产、安全、地理和设备的信息通过网络(通信线路)实时传送到地面调度中心,使得煤矿的安全、生产管理决策优化,实现了电子化生产。

(5)减少设备及其零配件的库存量,进一步降低吨煤成本,注重供应链的管理,大力推进以计算机、网络和数据库为基础的电子供应链。

(6)以市场客户为中心,重视客户关系管理,实现自动配煤,满足用户对各种不同煤质的需要,推动电子商务。

(7)先进采煤国的煤炭企业正向管控一体化和产供销一条龙发展,实现企业信息化。

2.2“数字化”是信息的表达形式

(1)“数字化”是信息的表达形式,而且是信息最高、最先进的表达形式。

(2)计算机技术、微电子技术,尤其是网络技术的飞速发展,许多煤矿的地理信息、生产信息、安全信息、设备工况信息从采集(传感器)开始,就实现了数字化、网络化。

(3)传感器在采集信息的同时,它可以对信息进行处理、自校正等等,不仅使被采集的信息更准确,而且可以在一根总线上挂许多个传感器,使信息传输系统更简便。被采集的信息不会因传输距离和环境使精度受到影响。

(4)由于信息是以数字的形式进行采集、处理、传输和应用,因此,生产、安全、管理、市场等等信息可以在一个统一的平台上进行传输和交流,使所有的信息能得到更充分的应用,使所采集到的信息得到更大的增值。

2.3“自动化”(管控一体化)是基础与目的

基础:

(1)信息化(数字化)的信息绝大部分来自于各种生产、工况、安全综合自动化系统的自动检测装置(传感器),这些是信息化(数字化)的基础。

(2)综合自动化的网络和数据库是信息化矿山的主要组成部分。

目的:

(1)利用先进的控制理论(如人工智能、专家分析等)建立煤矿安全生产所需的决策支持系统,实现矿井安全、生产和效益的多目标优化。

(2)自动化是指机械设备或生产过程(煤矿包括环境安全)、管理过程(DA、BA)在没有人的直接参与,经过自动检测、信息传输、信息处理、分析判断、操纵控制,实现所要达到的目标。信息化(数字化)的目的是实现生产自动化、安全监测自动化、管理自动化、办公自动化,最终实现无人化矿山。

3.数字矿山信息集成的内容

(1)矿产资源信息和矿山设计、矿井建设及开采过程的数字化、可视化。

(2)煤矿生产过程监控、全矿井生产安全环境监测、生产过程信息综合利用等方面的网络化、自动化和智能化。

(3)各种检测仪器仪表、自动化设备在恶劣生产环境中的安全可靠应用与设备间的关联联动信息共享。

(4)图像监视和传输的数字化、网络。

(5)煤炭企业管理信息化及电子商务系统。

(6)基于信息融合技术渗透到生产、安全与经营各个层面的决策支持系统。

4.煤矿综合自动化网络平台

统一传输网络平台和统一软件及数据仓库平台是从硬件结构和软件配置上保证信息化矿山中的各子系统模块具有统一的传输模式、统一的数据表达形式、统一的数据处理格式和统一的数据管理方式。

(1)自动化矿山对传输网络平台的要求:

1)网络具有良好的可靠性。

2)网络具有良好的冗余性。

3)各子系统与网络平台形成透明传输,并能方便地上,下网络,相互构成联系。

4)各子系统内部应能形成各自的逻辑网。

5)有限制网络流量的能力。

6)丰富的网管功能。

7)最大限度的使用网络资源。

(2)工业以太网:

以太网是目前应用最为广泛的计算机网络,工业以太网是为工业应用专门设计,是一种国际标准、开放的网络,其数据传输率高,实时性好,是今后发展的方向。

1)工业以太网传输平台的特点是能很好的满足上述对传输网络平台的要求,同时能实现数字、音频、视频的三网合一,真正实现综合业务传输。同时采用高可靠性工业以太网协议,可满足控制网实时性的要求。

2)不足是由于工业以太网通信节点通常是以太网交换机,而对煤矿生产设备的控制仍需要基于工业现场总线的控制器。1000M环形网交换机需要通过100M口实现与基于工业总线的控制器的连接,实现对现场设备的监测与控制,投资较大。另外,在协议转换上需要在各种工业总线协议与TCP/IP协议之间进行转换。

3)我国投入运行的工业以太网系统,有100M工业以太环网和1000M工业以太环网。而真正能实现三网合一的是1000M以太网。

5.结束语

“数字矿山”是一个美好的设想,“数字矿山”是矿山未来发展的方向,“数字矿山”需要经过几代人的努力才能实现的目标。而信息化、自动化是“数字矿山”最现实、最踏实的基础。现在人类已经进入了信息化的时代,我国煤炭企业应该抓住数字化带来的矿山企业改造与发展机遇,利用信息技术,改造传统产业,将数字矿山建设与整个煤炭企业的技术创新、管理改革相结合。

【参考文献】

第4篇:矿山工程数字化范文

[关键词]数字化矿山 实施 应用

中图分类号:TD2 文献标识码:A 文章编号:1009-914X(2016)16-0015-01

引言:所谓数字化矿山是采用现代信息技术、数据库技术、传感器网络技术和过程智能化控制技术,在矿山企业生产活动的三维尺度范围内,对矿山生产、经营与管理的各个环节与生产要素实现网络化、数字化、模型化、可视化、集成化和科学化管理,使矿山企业生产呈现安全、高效、低耗的局面

一、矿山数字化技术主要研究内容

矿山数字化技术是采用计算机网络、数据库技术、计算机图形学、组件技术及GIS技术等,建设矿统一的空间数据采集、存储、输出、查询与分析平台,构建服务于生产技术人员的地测、通风、安全、生产技术、高度、机电、运输、设备租赁及办公自动化等专业应用系统平台,在神华神东煤炭集团公司网络环境的基础上搭建面向公司管理决策层的Wed服务决策平台,实现多部门、多层次井上下数据共享,专业图件提高矿安全生产管理能力,进一步提升矿山技术管理水平,为安全生产决策提供技术保障,最终实现基于数字化、信息化和管理现代化的本质安全型矿井,为“数字煤矿”建设奠定坚实的基础。

主要研究内容与关键技术包括:本质安全型信息共享与管理模型及其应用研究;基于信息流的地质、测量、通风、安全、生间、机电与测度等专业工作流模型研究及其应用;基于C/S+B/S的煤矿地质、测量、通风、安全、生间、机电与测度专业数据一体化管理应用研究;基于CcmGIS+WebGIS矿井专题图形上报、游览、导航与专题应用研究,基于CcmGIS+WebGIS矿井自然灾害隐患识别与预警模型研究及其应用;基于三维可视化技术的矿井井下三维展示,漫游、三维信息查询与分析应用研究;面向煤矿安全事故求援的应急指挥辅助决策应用研究;基于全文搜索引擎的技术资料数字研究。

二、矿山数字化技术应用主要目的

主要对矿井的地测、一通三防、监测监控、调度、危险源预警、采矿设计、机电设计、生产管理等核心信息的科学集成与充分共享,进而大大提高煤矿生产效率和煤矿安全生产的信息化管理力度;建立对包括地质、测量、通风、生产设计与机电管理等数据库为核心,以分布式的网络应用为基础环境,支持专业设计、资料管理、综合业务调度、信息查询及多级远程网络实时监测监管的安全生产统一信息化平台;实现煤矿地测、采煤、通风、安全、机电、调度等相关专业数据与图形的一体化管理,基于网络平台实现多层(生产技术层、矿井管理层、公司管理层、决策层)用户的管理、查询与分析的功能;系统整体架构上,数据库统一集中采用SQLServ2000或ORACLE管理,远程管理系统基于NET开发且整体集成,C/S模式的专业基础应用系统用VC++等开发;实现地测、一通三防、监测监控、调度、危险源预警等的三维可视化表达和快策分析;制定安全生产信息化管理规范和模式,实现安全生产的完全信息信息化管理,提高安全生产管理水平,降低安全生产事故。

三、数字矿山整体规划与实施

矿山企业井田开拓、开采中休掘条件杂志,不可遇见因素频发,企业平衡生产、安全控制的管理难度大,同时井下作业范围广,移动设备多、控制系统繁杂,因而矿山数字化必须是一个长期、循序渐进的过程,数字化进程坚持“整体规划、分布实施、重点突破”的原则。

具体来说,首先应从企业发展目标出发,全面 分析企业内外部环境,制定矿山数字化发展战略、规划矿山数字化建设蓝图、统一企业各阶层对矿山数字化建设目的和意义的认识,实施中,要以“数字矿山”整体规划为基础,坚持由易到难、由浅入深、由上到下、逐步推进思想,首先根据矿山数字化总体规则搭建整体系统架构,并针对生产经营中存在的主要矛盾和问题,找到切入点,利用自动化、信息化手段加以解决,为矿山数字化奠定基础。

数字化矿山应采用一体化的管理,我们认为数字矿山应按照一体化的构架设计实现,从业务视角看该技术既覆盖矿山主业的从原煤开采与运输、洗选加工装车外运全过程,同时覆盖生产辅助业务,如机电设备运行管理、地质测量管理、本质安全管理、煤质管理能及财务、人力资源、办公事务处等辅助后勤业务。

数字矿山一体化构架即包括了自动化技术水平较高的全矿生产过程综合自动化控制系统,建立现代化的、覆盖矿井各生产系统的实时调度监控网络,实现煤矿生产“采、掘、运、风、水、电”的综合调度和和产过程自动化;还包括企业管理信息系统,实现包括经营管理、事务管理、技术管理和能源管理等内容。

从生产运营来看,数字矿山一体化构架将覆盖从计划制定、分解及下达到作业任务执行跟踪、工程项目管理到生产经营绩效评价与反馈的整个过程以实现闭环管理。从时间轴上看,将覆盖企业中长期、年度及每日朱同管理周期的需求。从涉及单位来看,可满足矿级、区队至班组最小生产单元的不同管理的要求。(见图1)

四、神东应用矿山数字化技术后的效益分析

随着企业管理水平、管理现代化水平的提高和信息化进程,利用先进的信息技术建立数字矿山安全生产技术综合管理信息系统已成为企业强化主业核心竞争力,提升管理效率和经营效益,实现科学、合理、精益组织生产的迫切需要。通过数字矿山安全生产技术综合管理信息系统的开发与应用,可以对煤矿各专业数据合理分类管理,对涉及的各种技术数据(地质、水文、测量、采掘、通风、机电、运输、生产、调度等)进行记录、处理、存楼、分析与管理、基于数据库与数据仓库,可以建立一个包括信息化管理平台,实现数据的数字化、管理的现代化,监测的自动化、事故的预警化、信息的可视化,为矿井规划、开拓设计、优化开采、调度指挥、安全生产、安全评价以及决策管理提供高可用性综合信息,为煤矿安全生产、强化管理、科学决策提供有力保障。具体的社会效益体现在以下几方面:

1)实现安全管理工作的信息化与网络化管理,基于工作流达到安全生产的远程管理与网上办公,这将在煤矿生产管理工作的模式上实现巨大转变,必将提高系统动行质量和可靠性,能实时获取系统各种运行参数,从而实现对设备的动态管理,即是以技术保安全的重要手段和具本体现,也是实现本质安全煤矿的不效途径,是煤矿安全生产、经营管理本质的变革。

2)基于地测基础信息实现煤矿多部门、多专业的安全生产专业信息化将超到带动作用,间接经济效益与社会效益不可估算。

结语:通过数字矿山建设为神东创造的价值不仅仅体现在经济效益上,还包括安全生产、提高员工满意度、科技创新、实现绿色开采等方面,建设“本质安全型、摄影师效益型、科技创新型、资源节约型、和谐发展开封”五型企业,并带动整个煤矿行业整体水平的提高。

第5篇:矿山工程数字化范文

【关键词】矿山测量;数字化;应用

1 矿山测量中数据采集的数字化运用

矿山测量的重要内容之一就是准确及时将矿区地表形态、矿物产状、矿区地质条件和回采工作面,包括各种巷道之间的关系以矿图的形式反映在图纸上。

由于地下矿区的地形、地貌、地质条件和矿物质,以及各种巷道,工作面和地面建筑物之间的关系,是客观存在的。但随着勘探,建井和开采的进行,和不断变化的。测量工程技术人员的任务就是科学、正确、及时地把这些内容反映在各种图纸上面,而这些图纸就被称作矿图。大比例尺地形图和矿井地图测绘的矿山测量的一个重要内容和任务。传统的制图方法是一个脑力劳动和体力劳动结合的工作,还有大量的室内数据处理和制图,绘制时间长,而且单一,很难适应现代矿山建设和生产的需要。同时在矿产资源开发过程中,将不可避免地造成破坏的土地,造成生态环境的恶化。矿区土地和环境破坏,不仅直接影响整个矿区经济发展,也为当地经济的可持续发展产生很多负面影响。当今信息时代的发展,矿区资源环境需要不断提高。如何发挥矿业开发最大的好处,取决于使用先进的管理科学技术决策。

在数据的采集过程中,实现全站仪、电子经纬仪、全球定位系统、计算机控制的相关设备的综合运用,采集矿山数据的采集工作。这种数字化技术的运用,使得数据采集的工作效率得到了有效的提高,降低了工作人员的工作量,并且这种测量的数字化会根据工作地点以及矿山结构的特殊性进行调整使得测量中的数据采集会更加的准确、科学和规范,为使数据处理中更加准确提供精确的数据。

2 矿山测量中数据处理的数字化运用

矿山测量工作中的数据处理内容,指对数字、图形、文字以及表格的相应处理,涵盖了采集、处理与存储。实际工作的过程中,通过计算机加工整理测量的数据,制作电子化的表格,并共享数据。此过程中,须使用专业化的数字处理软件,比如说VB软件等,此举对于有效建立数字数据库是非常重要的,并可提高数字共享性、维护性以及易保存性。经过数据的采集,为了更好的对数据进行处理,可以利用三维可视化技术,通过该技术会在采集的数据的基础之上,对矿山的空间信息、结构以及地形地表的空间位置有一个更加整体性的空间分析。三维可视技术先是需要建立一个符合矿山情况的立体模型,这种模型可以根据实际对点线面进行调整,其次是根据矿山周围的环境对模型进行光泽以及颜色等方面的调整然后通过灯光的效果模拟整个画面,最后在进行一个空间分析。通过更准确的空间分析,进一步完善测量数据,借助计算机技术,对测量出来的数据做一个电子图表,或者是通过表格、图形等方式对数据进行有效的处理,使对数据的运用更简洁更生动,运用到具体的生产实践中去。

矿山的显著特点是:地面和地下建筑物、设施、设备和工程的改变是随着生产的发展和时间的推移变化的。老的绘图方法很难适应现代矿山企业组织生产、安全管理、容量管理、协调开采、环境保护、可持续发展的要求。传统的绘图方法由于大数据测量和手工,绘画的方式映射效率低,单一形式成图,已经不能适应现代科学发展的矿山测量的要求。因此,数字绘画方式随着科学的发展和技术逐渐被应用在矿山测量工作。数字测绘技术具体含义是指矿井地图使用电脑制图,分析,总结成数字信息。将矿图转化成数字化信息,通过计算机管理,成图,分析就能够解决上述问题,可以及时掌握地面,地下空间关系,为矿山企业提供快速、准确的决策依据。数字测绘技术与传统技术相比具有以下优点:

(1)可以连续绘制或者更新不同比例尺图纸,甚至可以达成一测多用。

(2)绘图效率更高,成图质量更均匀,图纸精度更,采用技术更加先进。

(3)可将各种矿图以图形文件形式存贮在计算机外存贮器中,可根据需要很容易地转换成数据结构,为建立矿图数据库,建立矿山信息管理系统作技术上的准备。

(4)可以跟地理信息系统对接,可为优化矿山发展规划,优化矿区运输路线,优化环境保护方案,土地复垦提供快速、准确的决策依据。所以,数字化绘图技术在矿山测量中的广泛应用,必然能够推动矿山企业的科技发展道路。矿图与数字化的紧密结合,将使矿山企业得到更大发展,将使矿产资源得到更合理的开展。

通常情况下的数据管理只是简单的图纸存储,很少会对数据的存储和管理数字化。这就很容易导致数据的流失,所以可以对处理过的数据,利用计算机技术保存到安全的磁盘里,这些数据不仅可以在施工的过程中会得到进一步的运用,可能对以后其他矿山的测量有一个借鉴的作用,而且,在工程出现问题的时候,可以从测量的数据中找到问题的根源所在之处,及时有效的采取措施去解决这些问题,保证工程的顺利进行。

3 实现矿山测量数字化运用的方法

3.1 加大对先进的设备仪器的投入

要想实现矿山测量的数字化,先进的设备与仪器是基础条件。目前,由于矿山企业低水平的数字化测量,测量的仪器也是很落后的,为了提高数字化测量的水平,要广泛和全面的了解一下当前有哪些先进的设备仪器,根据自己所在地区的实际情况和现阶段所掌握的技术,引进设备仪器,在引进仪器的过程中,要注意到同类型仪器的不同型号和质量等各方面的问题(仪器质量差会造成测量数据误差加大),并不断的提高技术,改善现状,促进企业数字化测量工作更顺利的开展。

3.2 加大对技术人员的聘用,对测量人员的培养

在现在的矿山企业中,一般是文化水平较差的体力劳动者,而在测量中数字化技术的运用要求的是高素质的专业人才,必须对这些高科技工具有能够熟练的把控,所以矿山企业要加大对技术人员的聘用投入,对企业的一般员工进行在他们可以接受的范围内的技术培训,从整体上提高工作人员的专业素质和掌握高技术设备的能力。这样会对矿山开采中测量的数字化有更好的发展与运用,实现对矿产资源更充分的利用。

3.3 加强对矿山测量数字化运用重要性的认识矿山企业的决策人员和管理者要认识到矿山测量数字化运用的必要性

一方面,对矿山测量数字化就是要形成一种以信息化、智能化和自动化来带动矿山企业获得更好的发展前景的观念,所以矿山测量数字化的运用,对企业提高在行业内部的竞争力,获得健康快速的发展是有重要作用的;另一方面,数字化的矿山测量技术,能够更加准确的分析地形地貌等各方面,这样会使得工作人员在进行矿山开采和矿品生产过程中的人身安全得到保障,以免发生山体崩塌等重大的危害性事故。

4 结语

在信息飞速发展的当今,数字化测量技术已经逐渐取代了传统的矿山测量技术,现代矿山测量和生产的要求已经越来越高。矿山测量学不仅仅是矿井安全生产,也与采矿、科学生产和其他重要的工作密切相关。因此,相关企业和员工在进行矿山测量时,应该广泛使用先进的数字化测量技术,提高矿山企业的安全生产的效(下转第300页)(上接第289页)率,促进矿山企业的可持续发展。

【参考文献】

[1]王洋,等.数字测量技术在矿山测量中的应用[J].科技传播,2013.

[2]时宁宁.论数字化技术在矿山测量中的应用[J].中国西部科技,2010.

第6篇:矿山工程数字化范文

【关键词】MicroMine软件;三维可视化;数字化矿山

0.引言

随着我国工业化步伐的加快,矿产资源急剧消耗,当前矿产开发正在向开采技术条件复杂、矿石品味低得贫矿发展,极大地增加了采矿成本。为了提高经济效益,同时保证较恶劣的开采技术条件下的作业安全,矿山的设计和管理者正在努力改进采矿方法及技术,“数字化”矿山就这样走进了人们的视野。

数字化矿山的核心是在统一的时间坐标和空间框架下,科学合理地组织各类矿山信息,将海量异质的矿山信息资源进行全面、高效和有序的管理和整合[1],数字化矿山的任务是在矿业信心数据仓库的基础上,充分利用现代空间分析、数据采矿、知识挖掘、虚拟现实、可视化、网络、多媒体和科学计算技术,为矿产资源评估、矿山规划、开拓设计、生产安全和决策管理进行模拟、仿真和过程分析提供新的技术平台和强大工具。

矿产行业的特殊性决定了矿山信息化的不同之处,它不是简单的信息叠加或传递,而是在不断变化的生产数据和资源数据的基础上,通过软件系统将这些信息集成共享后,使设计者和管理者全面、及时、准确地掌握企业生产的资源、产品、成本、安全和市场需求等信息,优化设计并实现生产经营决策的科学性、及时性。因此,借助合适的矿业软件可事半功倍。

近年来,随着计算机技术的迅猛发展以及计算机图形学技术、三维GIS技术和数据库技术的日趋成熟和完善,基于传统二维图件的矿山开采设计与管理逐渐显露出其准确性低、设计周期长、开采方案单一、工作效率低下等诸多弊端,难以满足现代矿山信息化发展的需要,三维建模开始为人们广泛认可和接受。基于三维可视化技术的MicroMine等矿业软件的应用为矿山企业的资源精确化评价与管理、真三维开采设计和方案优化、矿山项目多方案快速对比研究等生产技术管理和项目决策提供了快捷、强大的工具和智能支持[2]。

1.MicroMine软件简介

MicroMine是澳大利亚MicroMine国际矿业软件有限公司开发的大型专业矿业软件,是一套三维交互式图形软件系统,具有地表测量数据处理、地质勘探数据分析和采矿设计等功能,主要用于地质勘查和地质建模、资源评估、储量估算、露天和地下采矿设计以及尾矿复垦和设计等。

MicroMine软件适用于所有金属矿种的露天和地下开采设计和生产管理,涵盖矿业开发的整个发展阶段,可满足不同工作任务的要求。

2.MicroMine软件的主要功能

软件以模块化构建,包括模块:核心模块、勘探模块、资源评估模块、线框模块、采矿模块、测量模块、绘图模块和露天境界优化模块等,其数据传输、转化支持MAPGIS、ODBC(Excel,Acess,Foxpro,DBASE)DEM,DXF,Surpac等格式的数据,为用户提供地质勘探数据解译、三维建模、资源评估和采矿设计等功能。

3.Micromine软件在数字化矿山设计过程中的应用

3.1构建地质数据库

Micromine可用多种数据形式来存储和管理地质信息,数据库的数据类型主要包括勘探数据和刻槽数据。利用勘探模块可以实现勘探数据编录、样品组合分析、地质统计学分析等功能,生成的地质数据库可以在三维空间中显示,也可以通过修改显示风格等很容易了解矿山地质勘探方面的成果资料,以及地质层位、品位信息等情况。

3.2 创建矿体三维实体模型

实体模型也称为线框模型,是用来描述三维空间物体的几何形态,是定义矿体、巷道、地形、断层、采场、岩层的通用技术,是MicroMine三维模型的基础。

矿体模型建立在地质数据库的基础上,依据勘探规范规定的矿体圈定原则,参照各个勘探线范围进行切剖面完成各个剖面图的生成,接着相邻剖面间通过多种线框连接方法反复推敲实现的。矿体模型生成后,可以在任意方向切剖面,生成剖面图,以供采矿布置巷道工程参考。

3.3创建空块模型

MicroMine的空块模型使用了精确而且完善的地质统计学插值法,每个块的属性可以量化或描述,这些块的属性主要是矿石的品味、质量或者比重等,空块模型的真正功能在于它可以在限定区域内快速生成用户定义的体积、吨位、品味等方面的报告,然后进行资源储量的估算评估,实现灵活约束条件下的统计报告。

3.4 创建地表DTM模型

地表模型主要是将现状地形图里所含的地表测量数据导入到软件中进行相应修改与创建DTM得到的地表上的地物,进行形象化及实体化,最新的MicroMine版本中加入了支持航拍图片的导入功能,使地表DTM模型更接近实际。

3.5 地下采矿设计

软件的地下采矿设计充分利用了三维设计工具,在屏幕上可以数字化,也可以使用工具,有很强的点、线工具,同时通过工程中心线,再加上断面形状和尺寸就可以很方便地生成工程实体。采矿设计主要包括开拓运输系统设计、采掘进度计划编排、排土场设计以及爆破设计等。

3.6露天采矿设计

软件自带的露天采矿设计工具可以对采矿场和堆场进行从下向上的交互式设计,用户可以自如地对连巷、道路、边坡坡度和台阶宽度进行参数化设计。在采矿过程中的标准可以随时重新设定,在设计矿坑的不同区域,地质信息可以用来决定边坡坡度的大小,同时软件提供了比较良好的优化功能,根据块段模型就可以通过软件的境界优化功能,得出不同要求的露天境界。

4.MicroMine软件在数字化矿山管理中的应用

4.1实现矿山井巷工程的可视化管理

井巷工程工作面的可视化管理对矿山安全生产和品味控制具有重要意义。MicroMine软件从设计说明中提取相关参数并结合地质编录数据建立了满足井巷工程工作面实时监控所需的数学模型,对矿山井巷开拓、运输等进行全面监控和管理,保证生产顺利进行。

4.2 对巷道进行地质编录管理

通过建立生产期间地质数据库,来实现对地质工程信息的综合管理,巷道地质编录所获得的地质信息在软件中进行整合,对刻画矿体的分布形态以及矿体边界起决定性的作用,建立起矿石品位分布特征的矿块模型,界定矿与非矿,指导采掘进度计划。

4.3 生产进度计划编排

MicroMine最终解决了开采计划中物质多样性、目标多样性、采矿地点多样性等复杂情况带来的项目规划中的难题。跟踪矿山开采进度,并根据开采技术条件及采掘现状及时调整,保证矿山安全达产。

5.结语

目前我国数字化矿山建设刚刚起步,MicroMine软件作为一套大型数字化矿山工程软件,有助于推动矿山数字化建设的进程,实现矿山数字化、信息化管理[3],提高生产安全性和生产效率,从而保证我国工业化建设进程中对矿石资源的需求。 [科]

【参考文献】

[1]郑彬彬,张俊文.现代化矿山—数字矿山的概念及其基本结构[J].煤炭技术,2007,26(7):1-2.

第7篇:矿山工程数字化范文

在矿山领域,国外对数字矿山的研究较早,数字地球的概念由美国首先提出,随后被许多专家学者引用。同时,世界上许多国家结合各自的实际,分别进一步提出了数字矿山的发展规划和建设目标。目前,矿业发达国家建设数字矿山的重点是实现远程遥控和自动化采矿。

我国对数字矿山的研究始于20世纪末,主要科研资助机构和相关行业相继立项支持了一批数字矿山课题。国内多所高等院校、科研院所、企事业单位相继设立了与数字矿山有关的研究所、研究中心、实验室或工程中心。山东新汶矿业集团泰山能源股份有限公司翟镇煤矿是我国第一座数字矿山,在国内开了数字化矿井技术应用先河。翟镇煤矿数字技术的成功研制,为我国矿山的数字化和信息化管理起到了示范作用。在数字矿山建设中,广泛应用各种先进的信息技术、有效提升了矿山企业的生产效率和管理水平。

冶金矿山行业信息化发展趋势

从规模、内容、作用、地位来看,我国冶金企业的信息化已经发展到了需要进一步深化的阶段。这个深化阶段的特征就是信息化与工业化相互融合,相辅相成,相互促进。通过提升冶金企业的信息化水平,进一步提升冶金企业的生产经营水平;通过冶金企业信息化技术的创新,促进冶金工业企业管理水平的创新。促进管理创新,提升企业竞争力的方法很多,信息化是创新提升的基础性、长效性方法。在矿山领域,随着数字矿山应用技术的不断发展和创新,矿山行业的生产和组织方式将会变得越来越“安全、绿色、智能、高效”。冶金矿山行业信息化应用系统的建设将呈现出以下主要趋势。

在多年的信息化建设过程中,冶金企业的领导慢慢意识到企业信息化要与企业的改革与发展相结合。在提高企业管理水平的基础上,规划信息系统的建设。目前,一些信息化程度较好的冶金企业在信息化的过程中已经意识到了管理理念的重要性,并以企业信息化为契机大力改革企业机制,为信息化铺平道路。

目前对于信息化基础比较完善的企业,信息化建设逐渐向企业间协同的方向发展。由于市场竞争环境的变化,企业越来越强调相互之间的协同,因此,企业越来越强调信息系统与价值链和企业内其他系统的集成能力。

经过十几年的信息化建设,我国的冶金企业信息化建设正在朝一个新的高度迈进。一个显著的特征就是冶金企业对企业信息化的内涵与意义有了新的认识,明显感觉到信息资源一体化趋势日益加强。

通过运用各种感知技术,能够更加全面、准确、实时地感知人、物和环境的信息。例如,在数据采集方面,将会从手工录入项自动采集,并且实现一次录入,全员共享方向发展;在装备方面,将会更加可靠、更加智能,故障修复将会从人工经验诊断、人工修复向自我诊断、系统自愈方向发展。

运用网络、通信、交互、集成等技术,实现人与人、人与物、物与物间的信息交互,以及系统间的横向集成和纵向互通。例如,在通信与网络技术方面,将会从有限的互联网互通向泛在的互联互通方向发展,带宽将会越来越宽,网络将会越来越稳定、可靠;在系统人机界面方面,将会从二维平面向三维立体方向转变,并且支持多种终端界面,例如,PDA、iPad、手机等;在信息系统方面,将会从烟囱式、孤岛式信息系统向集成统一平台方向发展,支持开发的协议,支持SOA架构。

运用数据挖掘、知识发现、专家系统等人工智能技术,实现生产调度指挥、资源预测、安全警示、突发事件处理等决策支持功能,实现矿山的智能化。例如,在控制技术方面,将会从手动干预、有人值守向自动控制、无人值守方向发展,从局部的、有限的控制向全局的、泛在的控制方向发展;在安全管理方面,将会由被动的、事后响应式管理向主动的、事先预警、预控方向发展;在决策支持方面,将会从经验决策向智能化决策方向发展。

冶金矿山行业信息化构架

基于新一代信息技术的冶金矿山信息化总体架构分为三个层次:感知层、网络层和应用层。感知层主要是基于物联网技术的应用,网络层主要是基于云计算技术的应用,应用层主要是涵盖冶金矿山行业勘探、开采、冶炼、加工等整个产业链的信息系统应用。

基于新一代信息技术的冶金矿山行业信息化架构中应用层是涵盖勘探、采选、冶炼、加工等整个产业链的信息系统,主要用来支撑企业的生产、经营和管控,这些系统包括生产综合监控系统、生产执行系统、经营管理系统和决策支持系统。

生产综合监控系统的内容包括剥离、采装、运输、生产等主要生产流程,也包括供电、供水、排水等辅助生产流程,还包括其他的安全保障系统。

生产执行系统包括从生产计划制定、生产计划执行到生产计划执行跟踪全过程的闭环管理,包含了三维展示、生产管理、生产智能调度管理、生产辅助设计、机电管理、安全管理、煤质管理、节能环保管理及综合分析管理。

经营管理系统建设户主要包括计划与全面预算管理、ERP系统、供应商关系管理系统、制度管理系统、本质安全管理系统、办公自动化系统、审计管理系统、科技管理系统、节能减排管理系统、综合统计系统、档案管理系统、知识管理系统、行政后勤管理系统、党群管理系统、煤炭安全管理系统等。

决策支持系统是基于数据仓库/商业智能技术对信息进行收集、整合、分析和展现,为高层及管理人员提供及时、准确的分析报表和数据,以提升企业整体生产经营决策水平,借此增强企业的核心竞争能力。

在基于新一代信息技术的冶金矿山行业信息化架构中,网络层起到传输、存储和计算的作用。网络层主要包括接入网关、互联网、通信网络、云计算、存储服务、数据仓库等。

在基于新一代信息技术的冶金矿山行业信息化架构中,感知层起到信息采集和信号处理的作用。感知层主要包括各种类型的传感器、控制器、读卡器等设备以及M2M网关、M2M模块等信息处理系统组成,如Sensor、摄像头、读卡器、路由节点和Sink节点等。

信息标准体系大的建设是信息系统开发成功和得以推广应用的关键因素,是信息化建设中的一项基础性的系统工程。在标准体系的建设过程中,应着重关注云计算、物联网等新一代信息技术标准的制定、采集和完善。新一代信息技术在矿山冶金行业的应用必须遵守一定的标准,才能使感知层、网络层和应用层的信息交互,实现本质意义上的信息统一;才能有效利用数据进行分析、决策和使用。

信息安全体系由信息安全组织体系、管理体系和技术体系构成。信息安全组织体系明确信息安全领导、信息安全监管和信息安全执行的岗位和职责,确保公司的信息安全工作能够有效运转。信息安全管理体系从流程和制度上来细化和固化信息安全管理要求,冶金企业和矿山企业需要按照《信息安全等级保护管理办法》对企业在运行和在建的体统进行评级,并根据不同等级设置保护策略。信息安全技术体系是针对信息安全不同层面的防护需求设置多维的技术防御手段,包括物理安全、网络安全、数据安全及备份恢复等方面。

运维管理体系是以ITIL运维架构为知道,以保障和维护信息系统安全稳定运行为基础,以提升用户服务质量为根本,以建成上下贯通、左右协同、资源共享的一体化运维管理体系为核心。实现IT运维管理的自动化、可视化、规范化、高效化、一体化和智能化。

冶金矿山行业的信息化应用

新一代信息技术在冶金行业的应用,推进了冶金企业的研发和设计协同化、生产设备数字化、生产过程智能化和企业管理信息化,加强了集散控制、现场总线控制、柔性制造、敏捷制造和网络化制造等技术的应用,强化了生产过程的在线监测、预警和控制,实现了冶金企业的节能环保、精确管理、安全生产和高效运营。

其中首钢矿业就是很好的行业应用典范。首钢矿业公司以计算机数字技术为中心,以网络通信为手段,以数学模型为基础,形成了基础装备数字化、 生产过程数字化、 生产执行数字化、企业资源计划数字化、办公自动化的数字化矿山,在我国冶金矿山行业实现了历史性突破。

同时,首钢矿业公司注重数字化基础设施建设,为矿山数字化提供硬件平台。广泛采用数字化计量设备和智能化仪器仪表,采、选、球、烧四大主流程和物料运输系统检测、计量数字化仪表达到14800块,为从数据源头自动采集数据,实现各层面系统的数据接口创造了条件。分期搭建网络和硬件平台,共敷设光纤150多公里,形成一个主干带宽1000M、桌面100M的高速企业网,覆盖公司各个单位。建成厂矿级网站45个,车间级网站73个,覆盖300多个班组,联网计算机达到2600多台。

实施矿山生产流程管控数字化,提高自动化水平。建立了覆盖采矿、选矿、烧结、球团、运输等工序的计量检测、设备驱动和生产过程控制的数字化系统,实现生产过程自动化和智能化。采矿应用Surpac矿山工程软件,进行资源评估、矿山规划、开拓设计、决策管理等模拟、仿真和过程分析。自主开发应用矿车自动调度系统,自动进行车流规划、优化派车,合理分配车流。选矿应用球磨自控系统,对球磨机工艺流程运行参数进行检测和监控。自主开发球团流程监控系统实现配料、造球、链篦机、回转窑、环冷机和喷煤等五大区域实现集中监控和预警管理。自主开发烧结流程监控系统。通过对现场工控基础信息的采集和再加工,实现信息、数据不落地和闭环管理,形成全流程800多个点位数据集中监控,为生产决策及操作提供了实时支持。自主开发烧结智能控制系统,实现烧结矿自动配料、混合料自动加水、烧结机点火自动调节、烧结终点自动控制、烧结矿强度与能耗自动控制、烧结异常数据调整六大功能。

首钢矿业公司积极变革矿山管理模式和手段,推进管理信息化。在创建数字化冶金矿山的实践活动中,搭建了纵向四级、横向四块的数字化矿山整体框架。形成以GIS地理信息系统、MES生产执行系统、ERP企业资源管理系统、OA信息系统四块为重点,现场装备数字化、生产过程数字化、生产执行数字化、企业资源计划数字化四级为基础的数字化矿山框架。促进了传统产业与信息化的融合,推进了生产经营的高效化,提高了企业核心竞争力。

智慧矿山建设现状和任务

作为新一代信息技术应用的一个重要领域,“智慧矿山”是通过各种感知、信息传输与处理技术,实现对真实矿山整体及相关现象的可视化、数字化及智慧化。其总体目标是:将矿山地理、地质、矿山建设、矿山生产、安全管理、产品加工与运销、矿山生态等综合信息全面数字化,将感知技术、传输技术、信息处理、智能计算、现代控制技术、现代信息管理等与现代采矿及矿物加工技术紧密结合,构成矿山中人与人、人与物物与物相连的网络,动态、详尽地描述并控制矿山安全生产与运营的全过程。以高效、安全、绿色开采为目标,保证矿山经济的可持续增长,保证矿山自然环境的生态稳定。

智慧矿山大体上经历了初级阶段、衍生阶段和智能遥控阶段。

初级阶段主要是构建基础设施和相应的信息化系统,实现矿山生产、运营等数据的共享和深度应用。衍生阶段主要是虚拟矿山,是通过虚拟空间技术和井下大量传感监控设备,将真实矿山的整体以及和它相关的现象整合起来,以数字的形式表现出来,从而了解整个矿山动态的运作和发展情况。智能遥控阶段,就是矿山地面和井下的、人类从事矿产资源开采的各种动态、静态的信息都能够数字化,而且用计算机网络来管理,同时利用空间技术、自动定位和导航技术实现远程遥控和自动化采矿。

目前我国智慧矿山的建设还处于智慧化阶段的初级阶段。智慧矿山的建设还处在矿山勘察、规划设计、生产监控调度、安全生产检测以及矿山综合管理等各个系统的建设阶段,还不能完全实现各种信息的全面共享和深度应用。

随着信息技术的快速发展,用信息技术武装矿山企业是大势所趋,同时,信息技术也是提高矿山企业科学管理的有力手段。云计算、物联网等新一代信息技术在智慧矿山中均有广泛的 应用。

第8篇:矿山工程数字化范文

(1.安徽理工大学测绘学院,安徽 淮南 232001;2.淮浙煤电公司顾北煤矿,安徽 淮南 232001)

【摘要】本文介绍了资料处理数字化技术、三维可视化技术、数字化绘图技术、gps定位技术等现代数字化测量技术,它能够有效测量精度,减轻劳动强度和提高工作效率,值得在数字矿山建设中推广应用。

关键词 矿山测量;数字化技术;测量精度

0 前言

矿山开采、生产的科学性与安全性与矿山地质测量工作息息相关。随着数字化技术的发展,现代数字化测量技术逐渐被运用到矿山测量工程中,也取得较好效果。一方面它能改善测量精度,进而有效提高矿山测量质量,另一方面它能为矿山企业生产安全提供可靠依据,应而能推进现代化矿山建设。现代数字化测量技术包括资料处理数字化技术、三维可视化技术、数字化绘图技术、GPS定位技术等,诸类技术极大地改善了矿山测量精度与质量,同时又大幅度减轻了工作者的劳动工作量,有效提高了劳动工作效率,是现化代矿山建设必不可少的技术支撑之一。由于数字化测量技术对于促进矿山企业安全生产的重要作业,现代矿山企业必须加大对现代数字化测量技术与设备方面的投入,以进一步提高矿山企业的核心竞争力。以下将具体阐述现代数字化测量技术在矿山测量中的运用。

1 数字化测量技术

1.1 资料处理数字化技术

作为矿山数字化系统中的重要技术之一,资料处理数字化技术即运用计算机技术进行数据收集与资料电子图表化,涵盖数据采集、存储、处理与管理几部分。

1.1.1 VB数据访问ADO

基于OLEDB访问设计,ADO通过提供数据访问接口,为数据源提供较高性能的访问途径。同时,ADO为完成数据系统的管理等所有操作提供了方法与属性,其中包括定义字段、表、索引、创建数据库、定位与查询数据、建立表之间的关系等多种工具,管理能力与数据访问完善。在进行CAD二次开发时,VB语言可以通过ADO 对象编程和Data控件的非编程访问任何数据库,从而实现与其他数据库的连接。

1.1.2 资料数字化技术

资料数字化技术是微软公司的技术标准之一,它主要用来协调与控制各种应用程序中的通信问题。在此标准下的程序会显露出来其他程序中的内置对象,最终改变对象属性,以实现跨程序运行的目标。此外,二次开发的技术主要包括面向对象的AutoCAD技术和数据库技术。由上述可知,相关工作人员可以使用面向对象的开发语言,例如VB 或VC 对CAD进行二次开发,从而彻底的摆脱一些繁杂的编程任务,使得面向对象的多种高级开发语言能够方便使用。通过非绘图对象和绘图对象操纵提供的CAD对象,从而实现开发测量绘图的目标,完成开发测量绘图,通过这样使得系统的开发效率和健壮性以及易维护性得到大大提高。根据矿山测量的实际情况,充分利用CAD的二次开发,建立起矿山测量的数字化应用系统,方便、准确的实现数字化数据测量和图纸绘制。

1.2 三维可视化技术

三维可视化技术是指对立体化的描绘和理解模型的一种技术手段。充分利用三维可视化技术,可以更加全面的了解地表地形与矿体的空间位置关系和矿体的空间信息,进一步提高矿山测量工作人员的空间分析能力。实现三维可视化的重要技术手段之一是三维动画软件,其他常用的软件还有3DSMAX,Maya以及Maya三维动画软件,这些软件不但具有基础的三维视觉效果和制作功能,还具有保函建模数字化和布料模拟以及毛发渲染、先进的运动匹配等多种功能。简单,灵活和完善的特点大幅度提高了三维可视化的制作效率与品质。

2 数字化绘图技术

矿区地面的地物、地貌,井下地质条件和矿物产状,各种巷道,回采工作面及其与地面建筑物之间的关系,都是客观存在的。但随着勘探,建井和开采的进行,它们又是不断变化的。测量工程技术人员的任务就是科学地、正确地、及时地把它们反映到各种图纸上来,这些图纸统称为矿图。大比例尺地形图和矿图的测绘,是矿山测量重要内容和任务。常规的成图方法是一项脑力劳动和体力劳动结合的艰苦的工作,同时还有大量的室内数据处理和绘图工作,成图周期长,产品单一,难以适应现代矿井建设及生产的需要。而且在矿产资源开发过程中,不可避免地会造成土地的破坏,造成生态环境的恶化。矿区土地和环境破坏,不仅直接影响到整个矿区的经济发展,而且对地方经济的可持续发展产生很大的负面影响。信息时展的今天,矿区资源环境需要不断的改善。如何发挥矿区开发的最大效益,取决于怎样采用先进的科学技术去进行决策管理。矿山有一个显著特点是:地面和井下的建筑、设施、设备和工程是随着生产的发展、时间的推移不断变化的。老的成图手段已经很难适应现代矿山企业组织生产、安全管理、贮量管理、协调采掘、环境保护、实施可持续发展的要求。将矿图变成数字信息即矿图数字化,通过计算机管理、成图、分析可以解决以上问题,可以及时掌握地面、井下的空间关系,为矿山企业提供快速、准确的决策依据。

数字化的矿图,我们称为数字矿图。数字矿图有如下优点:(1)效率高、技术先进、精度高且均匀。不受图纸变形因素的影响。(2)可连续更新和派生各种比例尺图纸,达到一测多用的目的。(3)可将各种矿图以图形文件形式存贮在计算机外存贮器中,可根据需要很容易地转换成数据结构,为建立矿图数据库,建立矿山信息管理系统作技术上的准备。(4)与地理信息系统GIS衍接,可为优化矿山发展规划,优化矿区运输路线,优化环境保护方案,土地复垦提供快速、准确的决策依据。在矿山测量当中,我们应当增强精度意识,使用“数字”说话。矿图与数字化的紧密结合,将使矿山企业得到更大发展,将使矿产资源得到更合理的开展。

3 GPS定位技术

以计算机为主体的电子设备、成图软件和遥感RS、全球卫星定位系统GPS、地理信息系统GIS在测量工程中的应用,人们最初的设想也许仅仅是为了加快测量成图速度、缩短成图周期。随着外业数据采集与计算机成图的有机结合的快速发展,成图自动化大大加快,成图精度显著提高,可操作性大大增强。目前的软、硬件条件使全新的矿图成图技术——数字化矿图具备了替代传统成图模式的可行性。特别是80年代以来,随着GPS定位技术的出现和不断发展完善,使测绘定位技术发生了革命性的变革,为工程测量提供了崭新的技术手段和方法。GPS全球定位系统具有高精度、高效益、低费用,不受时间、气候条件影响。在我国大地测量、工程测量和变形监测等测绘领域进行了广泛的实验和应用。GPS在矿山测量当中主要建立高精度施工控制网,以便利用这些网点的坐标直接得到并能达到高精度测量数据。

4 结束语

综上所述,各类数字化测量技术可有效测量精度,减轻劳动强度和提高工作效率,与传统矿山测量技术相比拥有无以伦比的技术优势,随着数字化技术的进一步发展,它将全面替代传统矿山测量技术。为了能快速实现矿山测量的数字化,一方面要加强技术的引用与装备的更新,另一方面也要加强新型矿山测量队伍建设,以保证矿山企业的可持续发展。

参考文献

[1]麻中云.矿山测量的数字化技术研究[J].科技风,2013(03).

[2]周青青,王建有.数字化测量技术在矿山测量的应用[J].中国新技术新产品,2010(10).

[3]阙毅慧.试论矿山测量中的数字化技术[J].广东科技,2013(10).

第9篇:矿山工程数字化范文

摘要:矿山工程三维技术能够实现矿产开发、采矿设计、采矿工程、生产组织等的三维动态展示,是数字矿山的关键性技术。以实例的方式介绍了三维技术在矿山工程建设、矿产资源动态管理中的应用,总结出适合现代化矿山应用的新型矿山工程技术。

关键词:矿业工程;三维技术;数字矿山;工程技术

“数字矿山”是以矿山系统为原型,以地理坐标为参考系,以矿山科学技术、信息科学、人工智能和计算机科学为理论基础,以矿山测量和网络技术为支撑,建立起的一系列不同层次的系统模型、物质模型、力学模型、数学模型、信息模型和计算机模型等的兼并集成,可用多媒体和模拟仿真虚拟技术进行多维的表达[1]。目前,该系统在我国已经有了初步的应用,但局限于企业系统引入的完整性、计算机水平与资金投入等因素的制约,在应用上缺乏深度和广度,不能为矿产资源评估、矿山规划、设计优化等决策提供全面有效的信息数据。

1数字矿山的系统构成

数字矿山分为7个层次:(1)基础数据层。为实测数据,或设计数据,是各层的基础数据。(2)模型层。该层将基础数据加工为直观、形象的表述形式,并为设计与优化提供依据。(3)模拟与优化层。如采选工艺流程模拟、技术经济指标参数优化、设计与计划方案优化等。(4)设计层。该层把各环节优化过的数据转化为可执行方案或直接进行方案设计提供手段。(5)执行与控制层。如自动调度系统、质量指标参数自动监测与远程控制操作等。(6)管理层。包括MIS与办公自动化。(7)决策支持层。依据各层级的信息数据加工成果,就重大的设计、施工、投资等方案进行分析与预测,为决策者提供决策支持[2]。

2五矿矿业数字化矿山建设情况

2008年五矿矿业公司启动数字矿山建设,购置了三维矿业软件,以北洺河铁矿为试点,以已有的测量数据、钻孔数据、一次圈定、二次圈定数据、地质素描数据等为依据,建立地质三维模型、矿体三维模型、矿山工程三维模型、地表建构筑物三维模型。由于矿山生产活动动态快速变化,常规测量设备与手段效率低、精度低、采集数据量极其有限,并且数据本身的误差较大不能达到建模要求,加之采空区、放矿溜井、塌陷区等人员设备无法到达,无法准确完成数据采集,造成工程设计方案不能准确地为采矿做指导,设计因此经常需要修改,造成大量的工程浪费。采空区、放矿溜井、塌陷区等重点监控区域无法准确建立三维模型,无法真正实现空间管理,实现资源优化配置与安全管理,更不能科学编制生产计划,无法做到采场出矿质量精细化管理。为此,2014年五矿矿业公司引进并开发三维扫描技术,对矿山采矿工程、采空区、塌陷区进行三维扫描,这些问题才更好的得到了解决,该公司的数字矿山系统也从第二层上升到第三层建设,三维扫描测量成果的应用如图1所示,目前,利用三维激光扫描技术,该公司开展了地形图扫描、采掘工程放量验收、采场边坡变形测量、采空区实测、充填体变形监测、井巷巷道实测、主溜井破坏度实测等。目前,建有矿山矿体三维模型、地质构造三维模型、采空区三维模型、井巷工程三维模型、地表建构筑物三维模型、地表塌陷区三维模型、地面工业场区等三维模型,真实反映其相互间三维空间管理。以数字化矿山模型的应用实例为依据,展示其在资源储量动态管理、工程质量控制、采矿设计、采空区管理、主溜井修复方案等方面的研究与应用,论述数字化矿山成果的重要性以及发展方向。

3矿山数字化建设的研究与应用

3.1矿山三级矿量及资源量动态管理

根据一次圈定二次圈定的地质勘探资料、实际勘测数据建立地质勘查数据库、三维矿产资源模型、矿业工程实测模型,可以清晰准确的展示任意中段任意盘区的三级矿量保有情况,采掘现状,为下一步科学的进行施工组织决策提供参考依据。

3.2工程施工质量检测

由于传统测量采用毛断法方式采集数据,只利用中线量取巷道的高度、宽度、到控制点的距离的方式,不仅速度慢,且采集数量极其有限,所以无法全面地反映出工程实际施工的质量情况,不能满足数字矿山的要求,利用三维激光扫描技术采集数据,建立巷道实测模型,利用其快速、便捷、大数据的特点,并通过三维矿业软件建立巷道真实模型。

3.3采空区验收、优化矿柱爆破设计

实际测量采空区现状,绘制三维实体模型,并参照盘区矿块的采准设计、回采设计,与模型进行合并,用类似于工程质量检测的方法进行对比,为爆破设计提供可靠的信息数据,有效降低了爆破震动对采空区充填体的破坏,在保证充填体安全的前提下,尽可能多地回收矿产资源。

3.4采空区顶板地压的安全风险评估

采空区的边帮受地压的影响存在垮落现象,如图5、图6所示,为了预防采空区边帮、顶板塌落冒顶对上部工程以及作业人员、设备造成伤害,以区域实测成果为基础数据,定期对采场的采空区变化情况以及采矿边界内顶部工程(凿岩巷道和充填耳洞)位置进行对比,对顶部工程的安全风险进行分析与评估。凿岩巷道底板与塌冒区边界距离为2.8~9.9m,最小距离仅为2.8m,采空区顶板冒落比较严重,并随时存在再次塌冒的危险,人与设备在巷道内作业内,随时处于危险状态,凿岩巷道应及时封闭并挂警示标志,禁止行人进入巷道内。

3.5地表塌陷区动态监测

采用崩落法采矿的矿山,地表将随着采矿活动的进行而不断的往下塌陷,人员与设备均不能够靠近,常规测量设备无法完成全面准确的数据采集,无法建立塌陷区模型。而利用三维激光扫描技术可以定期进行无接触的全面激光扫描,在安全区域快速获取塌陷区完整数据,并通过三维软件进行点云数据处理建立,不同测站数据的快速融合,如图9所示,三维模型进入三维矿业软件进行分析对比,获得塌陷区动态变化情况,可以及时准确的获取塌陷区变化的情况,并及时采取有效的措施,避免周边人员、设备、建构筑物遭受损失。

3.6为主溜井治理方案提供依据

主溜井是矿山运矿的主要途径,随着服务年限的增加,主溜井会出现不同程度的损坏,由于主溜井构造和服务的特殊性,人员无法进入了解内部情况,设计人员无法了解现场实际情况,来完成主溜井修复方案设计。利用三维激光扫描技术,快速完成主溜井破坏区域数据采集,实现主溜井虚拟模型数字化。

4结论与建议

(1)采用三维扫描技术采集数据,大幅度提高了数字化矿山成果的准确度、精度和密度,使采准设计、回采设计和中深孔爆破设计更加精准,爆破效果更好,技术经济指标有显著提升。(2)较大程度地提高了矿山的安全管理水平,避免了人员进入到采空区、地表塌陷区等危险地点作业,扫描速度快,可以配合遥控电铲、摇臂、遥控车进入到更深更远的地方工作。

(3)提高工程设计精度,很大程度地改善了爆破对充填体的破坏度,降低了残孔率、废孔率、二次爆破,提高回采率、降低贫化率、损失率,取得一定的经济效益。

(4)目前,五矿矿业公司正朝数字矿山系统第5个层次规划,把此数字化矿山技术成果应用到安全六大系统中,全面开展地表地容地貌的数字化建设与矿体模型、矿山工程模型相融合,将成果展示在调度大屏上,利用人员定位系统将人员位置定位在此模型上,同样实行人员分级,利用颜色分级,例如选厂设备检修,在调度室就可以清晰地看到有几人在维修,有无科长、段长、专家在,是否有其他的维修力量可以调配过来,减少维修时间。又如,如果井下某区域有塌方或者火灾,堵住了安全通道或者有被困人员,就可以在大屏上指挥人员疏散或者组织救援等。

参考文献

[1]刘立.现代矿山新趋势:自动化和智能化[J].矿山装备,2011(7):34-37.