公务员期刊网 精选范文 道路与轨道交通工程范文

道路与轨道交通工程精选(九篇)

道路与轨道交通工程

第1篇:道路与轨道交通工程范文

关键词 重庆市 轨道交通三号线 轨道交通模式 跨座式单轨

1 概 述

重庆市位于长江上游的丘陵地区,1997年升格为直辖市,是西南地区和长江上游的中心城市,全国重要的 工业 基地、交通枢纽和贸易口岸。主城区座落在中梁山和真武山之间,被长江、嘉陵江分隔成三个部分。城市依山傍水、高低错落,兼具山城与江城特色。

轨道交通三号线是重庆轨道交通路网中一条南北走向的骨干线路。该工程跨越了长江及嘉陵江,将重庆市南岸区、渝中区、江北区及北部新区串联在一起,沿途经过南坪、菜园坝、观音桥、江北客站等客流集散中心,具有很强的地区服务性和交通联络性,是一条十分重要的客运交通干线。它与在建的二号线(较新线)十字交叉,构成重庆快速轨道交通基本骨架。

重庆市轨道交通三号线工程全长约57km,计划分三期实施。一期工程:二塘至龙头寺;二期工程:龙头寺至江北机场(16.1km);三期工程:二塘至鱼洞(19km)。

2 线路及工程规模

2.1 线路走向

重庆轨道交通三号线一期工程由二塘至龙头寺,途经南岸、渝中、江北、渝北、北部新区等五个行政区。线路走向为:二塘———四公里———南坪———工贸———铜元局———菜元坝———牛角沱———华新街———观音桥———红旗河沟———加州花园———狮子坪———江北客站———龙头寺。

2.2 与其它轨道交通的换乘衔接

重庆市轨道交通“六线一环”的路网规划呈以渝中半岛为中心,沿城市 发展 轴线的方向辐射的形态。规划线路总长>300km。三号线与路网中的一号线、二号线、环线(四号线)、六号线相交,换乘与衔接关系分述如下:

①一号线

一号线朝天门至大坪段与本线在菜园坝相交,两线为“T”型换乘关系。

②二号线

二号线是与三号线制式相同的跨坐式单轨线路, 目前 在建,计划2005年通车。与本线初期在牛角沱“L”型相交,通道换乘,远期两线均延伸至鱼洞可实现衔接。

③环线(四号线)

四号线是重庆轨道交通路网中的一条环线,钢轮钢轨制式。与本线在四公里和江北客站相交,均为“L”型换乘。

④六号线

六号线的冉家坝至五里店段在红旗河沟与本线“T”型相交,因两线制式不同,形成通道换乘关系。

2.3 工程规模车站规模按6节编组设计,站台有效长为90m,并预留按8节编组扩建的条件。

3 客流预测及行车组织

重庆市轨道交通三号线一期工程通车年以及初期、近期、远期的客流量及相关指标见表1。

4 轨道交通模式及车辆选型

4.1轨道交通模式类型及模式分析

4.1.1城市轨道交通类型

城市轨道交通类型有地铁、轻轨、单轨和新交通等,这几种类型的轨道交通方式一般以运量区分为大运量和中运量两大类。大运量的轨道交通以地铁为主要交通工具,运量为3~6万人/h。中运量的轨道交通方式较多,有钢轮钢轨轻轨交通系统、单轨交通系统和新交通系统等,运量为1~3万人/h,其中,新交通系统运量仅1万人/h左右。

从重庆市轨道交通三号线客流预测结果来看,该线远期高峰小时单向最大断面客流量为2.48万人,远期向两端延伸后,高峰小时单向最大断面客流量为2.7万。适合选用钢轮钢轨制式(含线性电机牵引)和跨座式单轨交通制式的中运量轨道交通系统。

可供重庆市轨道交通三号线选用的几种中运量的轨道交通系统模式特点分析如下:

(1)钢轮钢轨交通系统

采用钢轮钢轨,牵引传动系统可以是直流、交流,这是世界上最多采用的轨道交通方式。

该系统无论是高架形式或是地面形式,噪音和占地面积均较大。其高架区间建筑宽8~9m,覆盖面和体量较大,适合于具有宽敞道路的城市,否则 影响 城市景观。

相对于单轨交通系统来说,钢轮钢轨交通系统的曲线通过能力和爬坡能力比较差。

(2)线性电机牵引钢轮钢轨交通系统

线性电机牵引钢轮钢轨交通系统已被日本、加拿大等国家采用。这种轨道交通方式具有体量小、低噪音的特点,有利于环境协调与保护,其曲线通过能力和爬坡性能比传统的钢轮钢轨制式的轨道交通系统有很大的提高,与单轨交通系统相当。

(3)单轨交通系统

单轨交通系统最大的特点是轨道即是桥梁结构,体型较小,占地少,高架区间仅有两条宽0.85m的轨道梁,体量较小,减少对日照的影响,有利于环境景观的协调,对于道路狭窄的城市是比较合适的。

由于单轨交通系统采用橡胶轮胎,运行平稳,乘座舒适,噪音和振动均较低。该系统的曲线通过能力和爬坡能力大,正线最小曲线半径为100m,最大坡度可达60‰。

4.2 重庆市轨道交通三号线模式选择

4.2.1 钢轮钢轨制式轨道交通系统

前已述及,钢轮钢轨制式和线性电机制式的轨道交通模式均满足重庆市轨道交通三号线客运功能要求,但针对重庆市轨道交通三号线具体特点,分别存在以下 问题 :

(1) 钢轮钢轨制式轨道交通系统

① 难以适应重庆市地形起伏大、坡陡、急弯多的地形特点。

三号线一期工程线路中,半径小于R200m的曲线线路长达1.4km,坡度大于30‰的坡段长达8.4km,最大坡度超过50‰。普通的钢轮钢轨制式轨道交通系统不能适应这一工程条件。

② 工程投资大,不 经济 。若采用这种制式,地下线路长度势必增加,高架桥梁断面也要相应增大,工程费用将大大增加,经济上不甚合理。

③ 高架桥建筑体量和覆盖面较大,景观效果差,更不适应重庆市道路狭窄的特点,也不利于桥下道路机动力废气的排放。

④振动噪声较大,不利环境保护。

⑤与在建的二号线无法实现资源共享。

(2) 线性电机钢轮钢轨制式轨道交通系统这种制式的轨道交通系统虽然曲线通过能力和爬坡能力较强,能够适应三号线工程线路条件,但仍然存在以下问题:

① 线性电机制式的轨道交通目前只有日本、加拿大等国家采用,还不是很普遍,尤其是在我国,尚没有这方面的建设经验,一些关键的技术尚未掌握。三号线采用这种制式有较大的风险。

②与普通钢轮钢轨制式轨道交通一样,高架桥建筑体量和覆盖面同样较大,景观效果也不理想。

③线性电机的车辆及相关设备国产化短期内难以实现,不能满足国家关于轨道交通设备国产化要求。

④与在建二号线同样不能实现资源共享。因此,重庆市轨道交通三号线不宜采用钢轮钢轨制式的轨道交通系统模式。

4.2.2跨座式单轨制式轨道交通系统

对于跨座式单轨交通系统,其特点和对重庆市城市特点的适应性已经过长期的反复论证,基本已有定论。对于轨道交通三号线来讲,与钢轮钢轨制式相比,采用跨座式单轨交通系统具有明显的优越性和适应性。

(1)适应轨道交通三号线的客运量要求

重庆市轨道交通三号线属中运量的轨道交通线,远期客运量为2.5~2.7万人/h。采用单轨交通制式时,采用6节编组即可基本满足客运要求。

(2)适应于山城重庆市复杂地形的特点和轨道交通三号线线路条件

重庆市的城市道路弯急、坡陡、道路窄,为尽量降低造价,即可能多地采用高架线,三号线曲线半径小、纵坡大。而单轨交通的特点之一就是爬坡能力强,通过小半径曲线性能好。为保证与道路坡度的一致,单轨交通系统能适应复杂地形的要求。

(3)有利于环境保护

跨座式单轨交通体量小、通透性好、减少压迫感、日照影响小、振动噪声低、无排气污染等公害,并有利于桥下道路机动车废气的散发。

(4)工程造价低、经济合理

由于单轨交通对重庆山城复杂地形的高度适应性,可以增加高架线的比重,不仅工程造价低,而且,有利于节省长期的运营费用。

(5)乘车舒适度大大提高

由于跨座单轨交通采用橡胶轮胎和空气弹簧转向架,列车运行平稳,乘客乘车舒适度提高,而且,由于提高了高架线的比重,乘客乘车还可观赏沿线的风景,视野开阔,心情舒畅。

(6)有利于轨道交通资源共享

三号线采用与二号线相同的跨座式单轨交通制式,有利于实现车辆及相关设备、检修设施,甚至人力资源等方面的资源共享。

(7)车辆及相关设备国产化均可实现

通过跨座式单轨制式轨道 交通 二号线一期工程(较新线)的 研究 、设计和建设,车辆及相关设备国产化已达到国家有关要求,随着二号线的建成,国产化程度还将进一步提高。

(8)建设力量有保证

通过二号线一期工程(较新线)的建设,重庆市已积累了相当丰富的建设经验,具有较强的技术力量。跨座式单轨交通的一些关键技术 问题 和国产化问题均已基本解决。轨道交通三号线采用跨座式轨道交通模式,其建设力量有充分保证。

综上所述,本次研究推荐重庆市轨道交通三号线选择与二号线相同的跨座式单轨交通系统模式。

4.3 车辆选型

车辆采用与二号线(较新线)相同的跨座式单轨交通系统模式。车辆主要技术参数见表2,3。

列车编组可由4、6、8辆组成,每辆车均为动车,其中每列车动力转向架占转向架总数的3/4。根据三号线各设计年度的运量要求和运能储备需要,确定编组方式。近期扩编为: *Mc1+M2+M4+M5+M3+Mc2 其中,Mc1、M2,M3、Mc2,M4、M5各为一单元。M2,M3、M4:动车(带有2个动力转向架);

M5:动车(带有1个动力转向架和1个非动力转向架)。 为密接式车钩,

*为棒状式车钩

5 机电设备配置 环控———采用屏蔽门系统。

通信———采用数字集群的通信方式,传输系统为同步传输(SDH)系列。

信号———采用ATC系统,由CTC和ATP二个子系统组成,预留远期ATO子系统。

防灾报警(FAS)、设备监控系统(BAS)———采用独立集中———分散系统。

给排水与消防———给水采用城市自来水,各种污水、废水分类集中就近排除。消防采用消火栓系统和自动喷水灭火系统,并辅以安全的灭火器,重要设备用房均设气体全淹没式自动灭火系统。

集检票———采用自动售检票系统(AFC),票务管理采用轨道交通路网结算中心、线路控制中心和沿线各级车站三级管理模式。

控制中心———设调度控制大厅、应急中心、通信、信号机械及工区、AFC系统、电力监控等系统设备用房、管理用房等。其选址位置在江北客站附近,建成后将服务于本线及六号线的运营管理,通过环线可与五号线控制中心实现功能互补,也可与大坪控制中心(一号线、二号线合用)实现联网。

6工程特点

重庆市轨道交通三号线一期工程有如下特点:

⑴线路走向与重庆市主城区主要客运交通走廊一致,沿线串联了多个公交、长途汽车站、火车站,形成多处综合交通换乘枢纽,强化了公共交通的功能。

⑵线路走向符合城市总体规划要求,将居住区、商业区、公共活动区、行政办公区串联成一体,强化了主城核心区的辐射作用。

⑶采用跨座式单轨交通,噪声小、污染少,对改善重庆市主城区的环境,创建“山水城市”将起重要作用,并可与二号线实现资源共享。

第2篇:道路与轨道交通工程范文

关键词 上海,城市轨道交通,建设管理,路网规划

1 引言 2001年5月,国务院批准了《上海市城市总体规划》(1999—2020),明确上海的城市性质是我国重要的经济中心和航运中心,并将建成国际经济、 金融 、贸易、航运中心之一。为实现这一目标,上海市必须加强城市基础设施的建设,加快大容量城市轨道交通和高速公路的建设,加强对外交通和市内交通的联系,进一步完善中心城道路系统。要坚持以公共交通为主体的政策,形成以轨道交通与公共汽车密切结合,各种交通方式协调发展的城市综合交通体系。2 世博会与上海城市交通发展战略

2010年上海世界博览会会址确定在南浦大桥和卢浦大桥之间的黄浦江两岸,预计总参观人数超过7000万人,高峰日参观人数将达到80万人。解决交通 问题 是成功举办世博会的关键因素之一。有关专题 研究 结果表明,世博会客运必须形成以轨道交通为主体,公共汽车、大客车、小汽车为辅的交通结构。为此,上海制定了专门的城市一体化交通发展战略,其目标包括:

(1)总体目标是构筑国际大都市一体化交通,以优质、高效、整合的巨型交通体系来适应不断增长的交通需求,全面提升城市综合竞争力。

(2)一体化交通具备人性化、便捷化、信息化和生态化的基本特征。一体化交通将提供“畅达、安全、舒适、清洁”的交通服务。具体为:要满足市民选择最合适的交通方式便捷地完成出行,中心城绝大多数市民出行时间控制在1h内;要降低交通事故率,全年交通事故万车死亡率在万分之五以内;要为市民出行提供宽松、良好的乘车条件;要减少环境污染,全市机动车氮氧化物年排放总量控制在3.5万t以内。

(3)一体化交通表现在交通与土地使用互相结合,交通与经济互相适应,交通与环境互相协调,交通与 社会 互相促进,以及城市交通与对外交通的紧密衔接。

要达到上述城市交通发展战略目标,需要大力发展城市轨道交通,以快捷、可靠的轨道交通来满足市民出行的需求;同时要实施改善地面公交、总量控制出租车以及有序发展私人小汽车和合理使用自行车等交通导向政策。尤其需要建设多条轨道交通线路直接到达世博会场馆,并通过形成的轨道交通网络来满足世博会对交通的要求,确保在上海举办一届“最成功、最精彩、最难忘”的世博会。

3 上海近期城市轨道交通发展规划

3.1 上海轨道交通的初始线路

为了构筑国际化大都市 现代 化交通体系,上海从20世纪90年代开始大力发展轨道交通,以促进经济社会发展,改善投资环境,提高市民生活质量,缓解交通拥挤。3.2“十五”期末形成轨道交通的骨架网络 9条线路中,17km长的上海轨道交通5号线(即莘闵线,莘庄———闵行开发区),经过3年的建设,已于2003年11月25日开始试运营。这也是国内第一条全高架轻轨线路。 轨道交通4号线(22km,为明珠线二期,宝山路———虹桥路),是上海轨道交通网络中唯一的环线,预计将在2005年末初步建成,并与3号线(明珠线一期)西半段在2006年实现环线运营。3.3 2010年左右形成轨道交通基本网络 基本网络是以远景网络确定的17条线路为依据,以“十五”期间计划建成的9条线路骨架网络为基础,经过集中发展以后,由13条线路形成总长达510km、功能较完善、能够支撑国际化大都市发展目标的轨道交通网络,中心城范围内的总里程约为310km。 基本网络是在“十五”计划形成的骨架网络上,再建设和延伸以下线路,它们包括:轨道交通2号线东延伸段(29.2km,张江高科———浦东机场),轨道交通7号线东延伸段(13.8km,零陵路———浦东龙阳路),轨道交通9号线二期工程(11km,东安路———浦东源深路),轨道交通10号线(28.8km,新江湾城———河南路———上海动物园),轨道交通11号线(120km,嘉定———临港新城),轨道交通12号线(33.3km,漕宝路———巨峰路)和轨道交通13号线(13km,金沙江路———不夜城)。

4 确立以轨道交通为主体的远景规划

上海市根据城市性质、规模、布局,以及城市交通现状和交通发展战略,借鉴国际大城市的经验,通过国际招标,完成了上海市轨道交通网络规划。该规划已纳入国务院批准的上海市城市总体规划。制订上海轨道交通网络规划的总体目标是:建设与国际化大都市框架相适应的网络化轨道交通系统,支持城市发展战略,增强上海国际竞争力;引导城市空间布局的优化,促进郊区重点地区的建设和规划城镇体系的形成,显著改善城市交通,构筑以轨道交通为骨干的公共交通体系,确立公共交通主体地位;增强上海辐射、服务功能,推动长江三角洲联动发展。轨道交通网络建成后,要形成中心城45min交通圈,充分发挥轨道交通准点、快速的特点,大幅度提高公共交通服务水准,避免小汽车过度使用引起的道路拥挤、空气污染、能源浪费,实现城市可持续发展。

轨道交通规划网络由17条线路组成,其中市域快速轨道线4条、市区地铁线8条、市区轻轨线5条,总长约810km。其中中心城内(外环线内)长度约480km。主要规划 内容 包括:

市域快速线(R线),由4条线路组成,总长428km。市域快速线主要在全市范围提供快速的交通服务,连接郊区新城、中心镇等重要地区,连接重要的对外交通枢纽(空港、海港、铁路客站等),构成全市范围的快速交通骨架。

市区地铁线(M线),由8条线路组成,总长264km。市区地铁线主要承担中心城的公共交通,疏解地面交通压力,采用高密度、大运量地铁系统为主,作为中心城公共交通的骨干。

市区轻轨线(L线),由5条线路组成,总长118km。市区轻轨线作为辅助线路,主要连接市域快速线和市区地铁线,为局部区域提供交通服务,是前两级网络的补充。

5 以创新应对上海近期轨道交通建设速度和规模的挑战

轨道交通近期的建设计划,决定了上海市城市轨道交通已经由单线建设转入网络化建设,这也是国内从未面临的新问题。一方面,我们必须超前规划、统筹兼顾,确保整个系统的先进性、前瞻性和科学性;另一方面,前所未有的每年40km建设速度对施工技术、施工设备、施工管理等也是新的挑战。

5.1 对近期城市轨道交通建设力量的分析

(1)上海轨道交通已经积累了5条线路的建设经验和教训,有了一支设计、施工和建设管理的基本力量。

(2)设计、施工、监理单位打出“中华牌”。上海轨道交通的建设力量已经不仅仅局限在上海的建工集团公司和城建集团公司下属的设计单位、施工单位和监理单位,而是全面引进市场机制。除上海本地 企业 外,通过规范的市场化操作,引进了铁路系统、冶金系统以及北京、天津等外省市、其他部委系统有实力的设计单位、施工单位,既充实了上海的力量,也带动了全国的建设市场。比如:铁道第一至第四勘察设计院以及所有铁路工程局现在几乎都加入到了上海的轨道交通建设中。上海市乃至全国建设力量的全面引入,确保了上海轨道交通的建设力量。

(3)施工机具设备能满足工程需求。按照近期建设规划,上海市每年将有30多个车站开工建设,隧道的盾构施工每年将完成30~40km。这样大的建设规模,对轨道交通施工机具的数量提出了较高要求,尤其是大型机械设备。控制工程建设进度的主要施工机械是盾构机。根据上海市目前拥有地铁施工的盾构机数量,每年完成盾构推进能力将超过40km。可以说,上海的盾构机械完全可以满足上海市轨道交通近期建设计划的要求。

5.2 施工对 交通 影响 的 分析 和对策措施 根据上海轨道交通近期建设规划及市内交通的 发展 情况,在充分 研究 建设规模的基础上对交通 问题 进行深入专题研究,按照“减少影响、保证交通服务水平”的原则,提出以下主要对策:

(1)优化工程筹划。轨道交通建设部门在安排

项目实施计划时,加强与其它部门的协调,做到轨道交通、市政管线、市政道路、绿化、旧区改造等项目能够相互结合、共同实施,如8号线计划与西藏路拓宽、10号线计划与河南路改造同步实施,以减少重复施工对交通的影响。 (3)优化设计方案。设计单位和规划部门在项目的设计阶段就考虑施工时的交通问题,使车站设计方案在布局上、地理位置上尽量减少对交通的影响,如车站位置尽量避开十字交叉口等。

(4)优化施工工艺。如大力推广管线非开挖技术和逆做法、盖挖法等施工 方法 ,压缩施工作业面以及缩短施工周期,减少对道路的占用,从而降低对交通的影响。根据以往经验,我们可以做到明挖车站施工占用道路控制在2年以内,盖挖或逆做法施工影响交通控制在1年以内。

(5)坚持“借一还一”和“公交优先”的交通组织原则。增加施工便道分流交通或对周边部分相关道路提前拓宽,减少对交通特别是主干道交通的影响。

(6)加强施工期间的交通管理措施。与交通管理和研究部门制定交通疏解的相关对策和实施方案,如调整局部道路 网络 布局、地区交通渠化、加大交通管制力度等,以分流交通、疏解交通,减少施工区域交通矛盾。

(7)强化文明施工,加快施工进度。加强宣传力度,取得市民对轨道交通建设的理解和支持。

5.3 创新理念,从系统规划、人性化设计和 科学 管理三个层面抓建设

(1)事先统筹规划以实现轨道交通资源共享为了规范近期实施的轨道交通线工程的总体及专业设计,上海正在编制地方性规范、标准,包括《城市轨道交通设计规范》、《轨道交通线路车站命名、标识和导向标志规范》、《城市轨道交通车辆技术规范》、《城市轨道交通信号系统技术规范》、《城市轨道交通车票制式和标准》及《城市轨道交通站台屏蔽门技术规范》等。

在实现网络化进程中,我们还认真研究车辆段、停车场、主变电站等资源合理配置问题,以避免重复投资,达到网络设施的综合利用和资源共享。

①车辆段及停车场:新建线路不再重复以往“一线一段(车辆段)”的建设模式,而是根据车辆检修的不同层次设置。担当车辆厂架修的车辆段和仅承担车辆定修等的停车场经过统一筹划和集中设置,基本网络的13条线路仅需要6座车辆段15座停车场(含已建4座)即可满足需要。

②主变电站:上海轨道交通将采用集中供电方式,基本网络中的13条线路受电点通过规划优化后,只需建设19座110kV变电站就可以满足要求,与分线建设时减少10座以上。

(2)体现“以人为本”,完善功能设施

通过3条初始线路的运营实践和借鉴国内外的先进经验,我们在规划设计中更加注重“以人为本”的价值理念,并已经着手从在建项目开始予以改进。

①完善残疾人通道和专用电梯。随着 社会 进步,关爱残疾人、方便残疾人出行的理念己经深植于轨道交通建设中。现在,每个车站都相应设置了残疾人专用电梯、残疾人专用通道以及铺设方便盲人行走的盲道,5号线、1号线北延伸段和4号线都已经付诸实现。 ③导向标识系统规范化。为避免以往单线建设中运营服务标识不规范的现象,满足乘客信息化、人性化的服务要求,上海针对轨道交通标识系统的不足,制定了《上海城市轨道交通标识、线路车站命名和线路识别色方案》,明确在建和将建的线路中必须遵照执行。

④屏蔽门逐步推广。作为环控和安全系统的重要组成部分,除2号线以外的地下车站站台都设置或预留设置站台屏蔽门。1号线北延伸段广中路站已经第一个安装完成屏蔽门系统。

(3)新技术、新装备在建设中的推广 应用 随着轨道交通建设的大规模推进,以“安全、质量、进度”为着眼点的各种新技术、新装备在上海的城市轨道交通建设舞台上各显其能。

①单圆盾构施工技术逐渐成熟。4号线转弯半径仅为250m的区间推进创下国内小曲率半径盾构法隧道施工之最。此外,单圆盾构的超近距离、浅覆土推进等也创造了全国的新记录。

②双圆盾构的应用。双圆盾构与单圆盾构相比,在相同覆土条件下,可大幅缩小隧道线间距,可以为地铁线路设计提供所需最低限度的横断面。8号线的开鲁路站———黄兴路站2.688km区间隧道首次引进了双圆盾构进行施工。

③远程监控系统的应用为深基坑施工安全保驾护航。自动化测量系统连续、全面、及时地采集深基坑施工数据,通过电缆并进一步利用互联网技术进行远程数据传输;监测数据在经测量软件处理后进入数据库,并由专门编制的工程管理软件进行智能化全过程预测分析和动态反馈分析,实现工程施工监测的自动化远程监控。4号线南浦大桥站、宜山路站已经进行了有关试验,8号线和6号线各车站正逐步推广。

(4)在新线建设中采用新技术为了真正有效降低工程造价,提高轨道交通服务水平,实现“小编组、高密度”,上海拟在新建线路的信号系统中采用移动闭塞技术。

为创造机电设备人机界面友好,便于统一控制和操作,拟在新建轨道交通工程中采用综合监控系统,把通信系统、设备监控、防灾报警和电力监控系统等有机地集成,实现轨道交通机电系统的综合监控。

5.4 采取切实措施,合理控制轨道交通工程造价 上海在控制造价方面采取的主要措施有: (2)轨道交通建设领域全面实行公开招投标。所有的工程项目,包括土建和机电项目,全部实行市场化操作,通过公开市场招投标,引入竞争机制。实践证明这是降低轨道交通工程造价的基本手段。

(3)加快机电设备国产化步伐。自从国家1999年实施国产化政策以来,通过十几年的实践,轨道交通国产化工作已经上了一个新台阶,轨道交通产业体系已经基本形成,车辆和设备产品的价格大幅度降低,对降低整个工程造价起了关键作用。

第3篇:道路与轨道交通工程范文

关键词 重庆市 轨道交通三号线 轨道交通模式 跨座式单轨

1 概 述

重庆市位于长江上游的丘陵地区,1997年升格为直辖市,是西南地区和长江上游的中心城市,全国重要的工业基地、交通枢纽和贸易口岸。主城区座落在中梁山和真武山之间,被长江、嘉陵江分隔成三个部分。城市依山傍水、高低错落,兼具山城与江城特色。

轨道交通三号线是重庆轨道交通路网中一条南北走向的骨干线路。该工程跨越了长江及嘉陵江,将重庆市南岸区、渝中区、江北区及北部新区串联在一起,沿途经过南坪、菜园坝、观音桥、江北客站等客流集散中心,具有很强的地区服务性和交通联络性,是一条十分重要的客运交通干线。它与在建的二号线(较新线)十字交叉,构成重庆快速轨道交通基本骨架。

重庆市轨道交通三号线工程全长约57km,计划分三期实施。一期工程:二塘至龙头寺;二期工程:龙头寺至江北机场(16.1km);三期工程:二塘至鱼洞(19km)。

2 线路及工程规模

2.1 线路走向

重庆轨道交通三号线一期工程由二塘至龙头寺,途经南岸、渝中、江北、渝北、北部新区等五个行政区。线路走向为:二塘———四公里———南坪———工贸———铜元局———菜元坝———牛角沱———华新街———观音桥———红旗河沟———加州花园———狮子坪———江北客站———龙头寺。

2.2 与其它轨道交通的换乘衔接

重庆市轨道交通“六线一环”的路网规划呈以渝中半岛为中心,沿城市发展轴线的方向辐射的形态。规划线路总长>300km。三号线与路网中的一号线、二号线、环线(四号线)、六号线相交,换乘与衔接关系分述如下:

①一号线

一号线朝天门至大坪段与本线在菜园坝相交,两线为“t”型换乘关系。

②二号线

二号线是与三号线制式相同的跨坐式单轨线路,目前在建,计划2005年通车。与本线初期在牛角沱“l”型相交,通道换乘,远期两线均延伸至鱼洞可实现衔接。

③环线(四号线)

四号线是重庆轨道交通路网中的一条环线,钢轮钢轨制式。与本线在四公里和江北客站相交,均为“l”型换乘。

④六号线

六号线的冉家坝至五里店段在红旗河沟与本线“t”型相交,因两线制式不同,形成通道换乘关系。

2.3 工程规模

重庆市轨道交通三号线一期工程线路全长约21km,其中地下线约8.2km,其余均为高架线。共设17座车站,其中高架站11座,地下站6座;车辆段及综合维修基地一座,位于童家院子立交桥附近,占地约29ha。

车站规模按6节编组设计,站台有效长为90m,并预留按8节编组扩建的条件。

3 客流预测及行车组织

重庆市轨道交通三号线一期工程通车年以及初期、近期、远期的客流量及相关指标见表1。

4 轨道交通模式及车辆选型

4.1轨道交通模式类型及模式分析

4.1.1城市轨道交通类型

城市轨道交通类型有地铁、轻轨、单轨和新交通等,这几种类型的轨道交通方式一般以运量区分为大运量和中运量两大类。大运量的轨道交通以地铁为主要交通工具,运量为3~6万人/h。中运量的轨道交通方式较多,有钢轮钢轨轻轨交通系统、单轨交通系统和新交通系统等,运量为1~3万人/h,其中,新交通系统运量仅1万人/h左右。

从重庆市轨道交通三号线客流预测结果来看,该线远期高峰小时单向最大断面客流量为2.48万人,远期向两端延伸后,高峰小时单向最大断面客流量为2.7万。适合选用钢轮钢轨制式(含线性电机牵引)和跨座式单轨交通制式的中运量轨道交通系统。

4.1.2轨道交通模式特点

可供重庆市轨道交通三号线选用的几种中运量的轨道交通系统模式特点分析如下:

(1)钢轮钢轨交通系统

采用钢轮钢轨,牵引传动系统可以是直流、交流,这是世界上最多采用的轨道交通方式。

该系统无论是高架形式或是地面形式,噪音和占地面积均较大。其高架区间建筑宽8~9m,覆盖面和体量较大,适合于具有宽敞道路的城市,否则影响城市景观。

相对于单轨交通系统来说,钢轮钢轨交通系统的曲线通过能力和爬坡能力比较差。

(2)线性电机牵引钢轮钢轨交通系统

线性电机牵引钢轮钢轨交通系统已被日本、加拿大等国家采用。这种轨道交通方式具有体量小、低噪音的特点,有利于环境协调与保护,其曲线通过能力和爬坡性能比传统的钢轮钢轨制式的轨道交通系统有很大的提高,与单轨交通系统相当。

(3)单轨交通系统

单轨交通系统最大的特点是轨道即是桥梁结构,体型较小,占地少,高架区间仅有两条宽0.85m的轨道梁,体量较小,减少对日照的影响,有利于环境景观的协调,对于道路狭窄的城市是比较合适的。

由于单轨交通系统采用橡胶轮胎,运行平稳,乘座舒适,噪音和振动均较低。该系统的曲线通过能力和爬坡能力大,正线最小曲线半径为100m,最大坡度可达60‰。

4.2 重庆市轨道交通三号线模式选择

4.2.1 钢轮钢轨制式轨道交通系统

前已述及,钢轮钢轨制式和线性电机制式的轨道交通模式均满足重庆市轨道交通三号线客运功能要求,但针对重庆市轨道交通三号线具体特点,分别存在以下问题:

(1) 钢轮钢轨制式轨道交通系统

① 难以适应重庆市地形起伏大、坡陡、急弯多的地形特点。

三号线一期工程线路中,半径小于r200m的曲线线路长达1.4km,坡度大于30‰的坡段长达8.4km,最大坡度超过50‰。普通的钢轮钢轨制式轨道交通系统不能适应这一工程条件。

② 工程投资大,不经济。若采用这种制式,地下线路长度势必增加,高架桥梁断面也要相应增大,工程费用将大大增加,经济上不甚合理。

③ 高架桥建筑体量和覆盖面较大,景观效果差,更不适应重庆市道路狭窄的特点,也不利于桥下道路机动力废气的排放。

④振动噪声较大,不利环境保护。

⑤与在建的二号线无法实现资源共享。

(2) 线性电机钢轮钢轨制式轨道交通系统这种制式的轨道交通系统虽然曲线通过能力和爬坡能力较强,能够适应三号线工程线路条件,但仍然存在以下问题:

① 线性电机制式的轨道交通目前只有日本、加拿大等国家采用,还不是很普遍,尤其是在我国,尚没有这方面的建设经验,一些关键的技术尚未掌握。三号线采用这种制式有较大的风险。

②与普通钢轮钢轨制式轨道交通一样,高架桥建筑体量和覆盖面同样较大,景观效果也不理想。

③线性电机的车辆及相关设备国产化短期内难以实现,不能满足国家关于轨道交通设备国产化要求。

④与在建二号线同样不能实现资源共享。因此,重庆市轨道交通三号线不宜采用钢轮钢轨制式的轨道交通系统模式。

4.2.2跨座式单轨制式轨道交通系统

对于跨座式单轨交通系统,其特点和对重庆市城市特点的适应性已经过长期的反复论证,基本已有定论。对于轨道交通三号线来讲,与钢轮钢轨制式相比,采用跨座式单轨交通系统具有明显的优越性和适应性。

(1)适应轨道交通三号线的客运量要求

重庆市轨道交通三号线属中运量的轨道交通线,远期客运量为2.5~2.7万人/h。采用单轨交通制式时,采用6节编组即可基本满足客运要求。

(2)适应于山城重庆市复杂地形的特点和轨道交通三号线线路条件

重庆市的城市道路弯急、坡陡、道路窄,为尽量降低造价,即可能多地采用高架线,三号线曲线半径小、纵坡大。而单轨交通的特点之一就是爬坡能力强,通过小半径曲线性能好。为保证与道路坡度的一致,单轨交通系统能适应复杂地形的要求。

(3)有利于环境保护

跨座式单轨交通体量小、通透性好、减少压迫感、日照影响小、振动噪声低、无排气污染等公害,并有利于桥下道路机动车废气的散发。

(4)工程造价低、经济合理

由于单轨交通对重庆山城复杂地形的高度适应性,可以增加高架线的比重,不仅工程造价低,而且,有利于节省长期的运营费用。

(5)乘车舒适度大大提高

由于跨座单轨交通采用橡胶轮胎和空气弹簧转向架,列车运行平稳,乘客乘车舒适度提高,而且,由于提高了高架线的比重,乘客乘车还可观赏沿线的风景,视野开阔,心情舒畅。

(6)有利于轨道交通资源共享

三号线采用与二号线相同的跨座式单轨交通制式,有利于实现车辆及相关设备、检修设施,甚至人力资源等方面的资源共享。

(7)车辆及相关设备国产化均可实现

通过跨座式单轨制式轨道交通二号线一期工程(较新线)的研究、设计和建设,车辆及相关设备国产化已达到国家有关要求,随着二号线的建成,国产化程度还将进一步提高。

(8)建设力量有保证

通过二号线一期工程(较新线)的建设,重庆市已积累了相当丰富的建设经验,具有较强的技术力量。跨座式单轨交通的一些关键技术问题和国产化问题均已基本解决。轨道交通三号线采用跨座式轨道交通模式,其建设力量有充分保证。

综上所述,本次研究推荐重庆市轨道交通三号线选择与二号线相同的跨座式单轨交通系统模式。

4.3 车辆选型

车辆采用与二号线(较新线)相同的跨座式单轨交通系统模式。车辆主要技术参数见表2,3。

列车编组可由4、6、8辆组成,每辆车均为动车,其中每列车动力转向架占转向架总数的3/4。根据三号线各设计年度的运量要求和运能储备需要,确定编组方式。

初期: *mc1+m2+m3+mc2

近期扩编为: *mc1+m2+m4+m5+m3+mc2

远期: *mc1+m2+m4+m5+m3+mc2

其中,mc1、m2,m3、mc2,m4、m5各为一单元。

mc1、mc2:带司机室动车(带有1个动力转向架和1个非动力转向架);

m2,m3、m4:动车(带有2个动力转向架);

m5:动车(带有1个动力转向架和1个非动力转向架)。 为密接式车钩,

*为棒状式车钩

5 机电设备配置

供电———采用110kv/35kv二级电压集中供电方式。全线设2座主变电站,从城市电网引入两路独立可行的110kv电源;牵引变电所引入电压为交流35kv,输出电压是直流1500v;各车站一般设一座降压变电所,车辆段设一座降压变电所和一座跟随式降压变电所,控制中心设一座降压变电所。全线设置一套电力监控系统(scada)实行在控制中心对供电系统及设备进行实时监控、电力调度自动化管理。

环控———采用屏蔽门系统。

通信———采用数字集群的通信方式,传输系统为同步传输(sdh)系列。

信号———采用atc系统,由ctc和atp二个子系统组成,预留远期ato子系统。

防灾报警(fas)、设备监控系统(bas)———采用独立集中———分散系统。

给排水与消防———给水采用城市自来水,各种污水、废水分类集中就近排除。消防采用消火栓系统和自动喷水灭火系统,并辅以安全的灭火器,重要设备用房均设气体全淹没式自动灭火系统。

集检票———采用自动售检票系统(afc),票务管理采用轨道交通路网结算中心、线路控制中心和沿线各级车站三级管理模式。

控制中心———设调度控制大厅、应急中心、通信、信号机械及工区、afc系统、电力监控等系统设备用房、管理用房等。其选址位置在江北客站附近,建成后将服务于本线及六号线的运营管理,通过环线可与五号线控制中心实现功能互补,也可与大坪控制中心(一号线、二号线合用)实现联网。

6工程特点

重庆市轨道交通三号线一期工程有如下特点:

⑴线路走向与重庆市主城区主要客运交通走廊一致,沿线串联了多个公交、长途汽车站、火车站,形成多处综合交通换乘枢纽,强化了公共交通的功能。

⑵线路走向符合城市总体规划要求,将居住区、商业区、公共活动区、行政办公区串联成一体,强化了主城核心区的辐射作用。

⑶采用跨座式单轨交通,噪声小、污染少,对改善重庆市主城区的环境,创建“山水城市”将起重要作用,并可与二号线实现资源共享。

第4篇:道路与轨道交通工程范文

城市中使用车辆在固定导轨上运行并主要用于城市客运的交通系统称为城市轨道交通. 轨道交通具有大容量、快速、准时、安全、舒适、清洁等特点,是解决大城市尤其是特大城市道路交通拥挤和交通污染的有效运输方式. 轨道交通建设需求资金巨大、建设周期长,城市轨道交通线路逐渐接线成网,将最终构成一个轨道线路纵横交错、错落有致、衔接换乘方便的轨道交通网.

目前,世界上已有100 多个城市轨道交通系统,而且许多大城市如伦敦、巴黎、柏林、慕尼黑、纽约、东京、莫斯科等已形成网络. 上海市轨道交通网已经建成和即将建成1 号线、2 号线、明珠线一期工程都是放射线,明珠线二期工程建成后将与一期共同组成环线,初步构成放射线-环线轨道交通网络. 世界上许多大城市均采用放射线-环线的轨道网络.

上海轨道交通明珠线一期工程线路和二期工程线路接轨后并不是一个完好的圆环形,圆环上存在着一期工程线路的向北和向南的延伸段. 可以看作是放射线和环线部分线路重合的情形,不同线路的列车在线路重合的区段部分共线运营. 这种独特的轨道交通共线运营在国内外的轨道交通网络中是罕见的,其运输组织具有一定的难度,同时提出了要进行深入探讨研究的问题.

1  连通型城市轨道交通网络特点

1. 1  连通型城市轨道交通网络技术设备特点

世界上有很多城市都采用连通型城市轨道交通网络[1 ] ,如德国的柏林、慕尼黑,美国的亚特兰大,以及我国的上海等城市. 连通型轨道交通网络与一般轨道交通网络相比具有以下几个方面的特点:

(1) 各轨道交通线路之间接轨点多. 连通型轨道交通网络各轨道交通线路相交时尽可能地相互接轨,使得接轨点较多. 以德国慕尼黑城市轨道交通网络为例(如图1 所示),其轨道交通网络仅由6 条线构成,各线接轨点多达8 处,这为列车跨线运营提供了条件,使线路客运功能得到最大程度的发挥,也能最大限度地满足旅客出行需求. (2) 线路辅助线设施配置完备. 连通型轨道交通网络中各线辅助线配置完备,这些辅助线包括渡线、存车线、折返线以及联络线等,这不仅为提高线路通过能力奠定了基础,更为列车跨线共线运营提供了保障. 图1  慕尼黑城市轨道网络示意图

(3) 车辆基地集中. 连通型轨道交通网中,多条轨fig. 1  sketch map of munich urban transit system net work 道交通线甚至全网共用同一车辆基地,如慕尼黑轨道 交通网只设一个车辆基地和一个小型的停车场. 由于各轨道交通线相互接轨,列车可以方便地通过与车辆基地直接相接的线路出入车辆基地,从而达到共享设施和资源的目的.

(4) 车辆及机电设备制式相同或相容. 轨道交通网络要成为连通型,不仅要求各线路设施相互连接, 而且要求车辆及机电设备系统具备统一性. 因此,连通型轨道交通网络中各轨道交通线的车辆及机电设备制式必须相同或相容.

(5) 全网共用同一控制中心,由同一管理机构管理. 连通型轨道交通网中相互联轨的轨道交通线甚至全网线路共用同一控制中心,并由同一运营机构管理. 网络运营组织要求统一调度指挥.

(6) 网络运营车底减少. 连通型轨道交通网络不仅有利于车辆基地集中设置、共用控制中心,以及车辆及机电设备等系统日常维修共享资源和设施,而且由于线路相互连通,车辆可以统一调配,备用车辆可以大大减少,从而有利于节省车底.

1. 2  连通型城市轨道交通网络运输组织特点

对于连通型城市轨道交通网络,相邻线路在交汇站接轨,相互线路间存在着直接联系. 因此不同线路上运营的列车可跨线运营. 此时列车运营组织可采用分线独立运营、共线运营和独立-共线运营相结合的方法. 城市轨道交通系统的独立运营是指列车在各自的线路上运行,列车在交汇站折返,旅客在交汇站换乘其它线路的列车. 城市轨道交通系统的共线运营则是指在连通型城市轨道交通网络中,组织不同线路上的列车通过交汇站运行,形成不同线路运营的列车跨线运行,并在部分线路的部分区段共线运营.

共线运营的运输组织方法与独立运营相比具有以下优点: ① 最大限度地方便了旅客的出行,旅客不需换乘即可到达旅行目的地; ② 充分地利用通过能力,采用共线运营的方式,可使得共线区段的线路通过能力得到充分发挥; ③ 有效地利用列车车底,减少车底折返作业. 但是,共线运营也存在着以下的缺点: ① 由于共线运营时,该轨道交通网络系统的能力将主要取决于共线区段线路的通过能力,因此会造成线路列车运营不均衡; ② 非共线区段列车运营间隔较长,将影响到非共线客流的出行; ③ 列车运营组织复杂,列车在交汇站存在较多的交叉干扰,相邻线路的列车运营相互影响较大. 城市轨道交通网络各线所衔接的城市小区旅客出行需求上存在差别,客流在不同时段、不同区段上的分布不同,为最大限度地满足客流需求,采用合理、灵活的运输组织方式十分重要. 因此,应根据各轨道交通线路的客流量、旅客出行特点、交汇站的线路连接方式等条件,确定列车运营组织方式.

2  上海轨道交通明珠线网络客流特点

2. 1  上海轨道交通明珠线网络特点

明珠线一期工程是上海城市轨道交通网中的南北向直径线,是联系南北辅城的城市轨道交通骨架线路. 线路走向南起闵行,经吴泾、沪杭铁路内环线、上海火车站、铁路客技站、凇沪铁路、逸仙路、吴淞镇、北止于宝钢,全长约60 km. 明珠线一期工程充分利用了经过市区内的沪杭铁路内环线及松沪铁路线,在原有铁路用地范围内修建高架轨道交通,彻底解决了既有市内铁路与城市道路的42 处平交道口严重阻塞交通的局面,给城市道路交通带来了通畅,沿线土地得到了开发.

明珠线二期工程起自老北站地区,经浦东新区至徐汇区虹桥路,所经地区有多个大型客流集散点,如宝山路、长阳路、张杨路、南浦大桥、上海体育场等. 明珠线二期工程与明珠线一期工程接轨成环,从而与运营中的地铁1 号线和地铁2 号线及明珠线一期工程构成“ 申”字形的轨道交通基本网络. 明珠二期与一期西部线路相接成环是上海地铁系统中的唯一城市环线. 它是联系其他线路的纽带,也是城市各个副中心之间联系的交通干道. 因此,其主要功能是将其他轨道交通线联系起来,使整个轨道交通网络成为一个有机的系统,加强城市区域间的联系,使城市土地得到合理、高效的开发利用,促进城市健康发展.

明珠线二期工程和明珠线一期工程接轨,利用明珠线一期西部区段(中段) 构成城市环线. 共线区段为虹桥路站至宝山路站(远期可能为上海火车站站) 的线路,有9 座共线车站. 国外的轨道交通网络也存在着共线区段,但那是树枝状的线网,共线区段在枝状线路的末端,像明珠线射线与环形线共线,并且共线车站达9 座之多的情况并不多见. 在明珠线这样的连通型城市轨道交通网络中,具备了组织不同线路上的列车通过交汇站运营,形成不同线路的列车跨线运营,并在部分线路的部分区段共线运营的线路基础.

2. 2  上海轨道交通明珠线客流特点

明珠线一期上行客流方向为上海南站站至江湾镇站(远期至宝钢站). 下行客流方向为江湾镇站(远期为宝钢站) 至上海南站站. 根据明珠线二期与一期连接形成环形网络的特点,本文把线路分为以下3 段:虹桥站以南为南段,虹桥站—宝山站为中段,宝山站以北为北段.

根据文献 提供的明珠线一期和二期线路各车站上下车预测客流量,利用线路o2d 矩阵推算方法,计算出明珠线一期和二期线路的o2d 客流量,然后根据线路分段情况进行客流量统计,得出了明珠线一期和共线运营环线的分段客流量. 表1  明珠线一、二期全线下行方向全日客流量

注:表中百分比是西半环到东半环客流量与东半环客流量的比值.

分析表1 可以看出明珠线一期上行客流集中在中段和北段,南段、中段和北段的客流比例大致为1∶20 , 说明上行客流主要是中段到北段的客流量. 下行方向每段客流量有着明显的年份变化,北段客流量基本稳定,中段和南段客流量急剧增加,反映出了中段客流到南段客流的增加. 可以看出明珠线一期工程主要服务线路南北端区域通学通勤进入市中心的交通需求.

明珠线二期工程和明珠线一期工程在一期线路宝山路站至虹桥路站共线. 明珠线二期线路为东半环, 明珠线一期共线9 座车站线路为西半环,东、西半环组成一个整环. 定义共线上行方向为从宝山路站顺时针经虹桥路站再回到宝山路站. 共线下行方向为从宝山路站逆时针经虹桥路站再回到宝山路站. 分析表2 和表3 可知,明珠线二期工程上行方向东半环客流量大于西半环,东半环到西半环的客流量占了东半环客流量50 % 以上的份额,且还有增长的趋势. 下行方向西半环到东半环客流量是逐年增加的, 这说明了环线的功能在不断地加强. 总之,从明珠线一期工程和明珠线二期工程的客流分析来看,虽然两线有9 座车站的线路是重复的, 但两线都具有各自的客流服务对象,即都有各自客流的主流向需求量,因此共线运营的方案既能满足客流需求,也能节省工程投资.

3  上海轨道交通明珠线运营方案

轨道交通工程建设投资巨大,每公里的轨道线路的资金需要7 亿多元,难以一次性建成投入使用,一般是采取边建设边运营的方法. 轨道交通促进了沿线区域的发展,运输需求也不断变化. 因此,轨道交通运营方案需要不断地调整以适应客流的变化. 根据线路技术设备和客流特点,明珠线网络存在多种运营方案,下面对几个有代表性的运营方案进行分析.

3. 1  共线运营方案

(1) 明珠线一期按现在南北向运营(上海南站站—江湾镇站),明珠线二期线路与一期西半环线共线9 座车站(宝山路站—虹桥路站),按环线运营. 运营方案示意图如图2 所示. 本方案特点是在明珠线西半环产生9 座共线车站,按连通型网络共线运营. 本方案要求明珠线南北向的客流较大,东西向的客流次之,在共线的9 个车站中客流最大. 为了采用此方案,在宝山路、虹桥路站需设换乘站(平面或立体换乘),在虹桥路站设停车场和折返线. 本方案对一期的运营组织不会产生太大的干扰,二期的运营方案也很易实施,使环线和一期线路上任意两车站旅客乘车方便. 本方案既节省了明珠线二期工程在西段工程建设投资,也实现了明珠线环线功能. 但共线车站运输组织较为繁忙, 图2  共线运营方案1 示意图

行车间隔的不同会造成输送能力的不均衡,非共线段能力利用率较 低. 一期南北段到东半环旅客要换乘两共线车站的客运组织工作要加mingzhu line 强,提供列车导向信息,组织好旅客换乘.

(2) 一期全线运营,二期环线运营和东半环运营相结合. 运营方案的示意图如图3 所示. 本方案特点是明珠线二期长短交路结合,共线运营. 此方案的客流特点是南北客流各区段均匀,中段客流较大,且东西环的客流相差不大,东西向的客流与南北向的客流相当. 方案要求一期的信号系统必须可以保证二期车辆在共线区段的运行. 本方案各段发车密度均匀,衔接方式多,可大大方便旅客. 但本方案组织不便,对车站 的组织工作增大了难度,其中列车的导向服务应加强. 应采取加强运营组织和导向系统等措施配合. 在上述方案基础上,还能形成多种共线运营方案,在此不再赘述.

3. 2  独立运营方案

明珠线一期在南北分段运营(上海南站站—虹桥路站,宝山路站—江湾镇站),明珠线二期按环线运营. 运营方案示意图如图4 所示. 本方案特点是不产生共线运营. 此方案要求明珠线一期南北两端之间直达客流较小且均匀,环线到一期两端的客流较小,环线的客流较大,3 条交路上的客流比较均匀. 本方案要求在宝山站和虹桥路站都应设换乘站,在上海南站站、江湾镇站、宝山站、虹桥站都要设折返线,一、二期信号及车辆系统要能相互兼容. 方案不产生共线运营,二期的运营方案也很易实施. 但是,虹桥路站以南的旅客到其他车站必须换乘,尤其是到宝山站以北的旅客要换乘两次;同样宝山站以北的旅客到其他车站也必须换乘,到虹桥站以南的旅客要换乘两次;环线上的旅客到一期南北两端也必须换乘. 这样会增加旅客的旅行时间,给这部分旅客带来不便. 如果采用此方案,应加强运营组织,认真设计好换乘站.

以上3 种运营方案的特点对比见表4.

图3  共线运营方案2 示意图 图4  独立运营方案示意图方案

第5篇:道路与轨道交通工程范文

摘要:城市轨道交通工程地质与水文地质复杂,不确定因素多;结构形式较多,施工方法交叉变换多,施工难度大。施工工期压力较大等。这些特点都集中表现为工程的高风险性。

关键词:轨道交通 施工管理 措施

城市轨道交通更具有几大显著特点,即周边环境复杂,各种建构筑物、地下管线多,且对施工变形控制要求高;工程地质与水文地质复杂,不确定因素多;结构形式较多,施工方法交叉变换多,施工难度大。施工工期压力较大等。这些特点都集中表现为工程的高风险性。为了安全和保质、保量按期完成建设任务,必须对工程的风险与安全实施系统管理。

一、疏解的设计目标和原则

(一)设计目标

交通疏解方案应确保轨道交通施工的外部环境良好,保证轨道交通的正常施工,同时又应尽量减少因轨道交通施工对城市交通造成的影响,保证城市交通的日常组织。

(二)设计原则

(1)结合轨道交通的规划、建设情况,协调建设时序,使疏解交通和轨道建设达到合理配合。

(2)结合周边其他站点及区间的疏解方案,从宏观角度疏解路网交通。

(3)根据区域交通特点进行设计:中心城区交通疏解应首先考虑交通出行需求;区域的地铁施工疏解宜以轨道交通施工为先。

(4)尽量保证围挡之外的道路及交叉口的通行能力。

(5)保障围挡施工区域居民正常出行。

(6)优先保证常规公共交通的运行。

(7)加强交通管理,结合交通组织方案完善交通管理设施。

二、交通疏解的主要工作路线

轨道交通工程建设长期性、施工点分布广泛的特点使得轨道交通施工期间的疏解方案设计十分必要且非常复杂,其主要工作路线如下图:

三、交通疏解的主要工作内容

根据以上工作路线,轨道交通施工期间交通疏解方案设计主要包括道路交通运行评价、施工计划完善、交通组织方案制定、相关部门沟通衔接四方面工作。

(一)道路交通运行评价

轨道交通施工对城市交通产生的影响非常显著,因此应对轨道交通各个重要施工阶段对城市道路网络的交通运行产生的影响进行系统分析。

首先建立交通模型,对各重要施工阶段施工期间的交通运行情况进行预测。预测结果将作为制定交通组织方案的基础依据,指导方案设计的方向与措施强度。

在制定交通组织方案后,对方案在施工期间对城市交通的缓解作用进行预评测,量化组织方案对于施工期间交通运行的改善程度。由此判断制定的交通疏解方案是否能够达到使城市交通运行顺畅的作用。如预测结果显示缓解方案实施后城市交通仍不能满足市民出行的基本需求,则应对疏解方案进行优化,直至满足要求。

(二)施工计划完善

轨道交通设计师施工单位基础的施工计划往往从轨道交通站点本身施工经济、方便的角度出发,可能对城市交通的影响因素考虑不足。因此在完成轨道交通工程施工期间的交通运行预测后,系统分析道路网络的运行情况,在施工方案对城市影响较大,交通疏解代价较高时,则有必要对施工方案进行综合比选,根据交通疏解的需求,改善施工方法及时序,力求在尽量减少对施工现场周边环境及城市道路交通影响的前提下,选择最优施工计划。

(三)交通组织方案

1、完善道路网络,补足围挡道路容量

基于交通预测分析,对于道路网络饱和或近饱和的区域进行道路及交叉口进行改造,提高其通行能力,最大程度分流因围挡施工聚集阻塞的交通流;在无法有效进行交通疏解的区域根据具体条件进行道路网加密。

2、加强交通管理力度,确保城市交通的秩序

轨道交通工程施工期间,有效的交通管理手段和强有力的交通管理对于保证城市交通的正常运行将起到至关重要的作用。其中包括以下几个方面:

(1)实施适当的交通管制措施

通过设置施工期间的单行道、信号灯配时调整、立交平作、部分交叉口转向管制及分时段设置部分车型运行管制区域等灵活有效的管制措施,配合区域施工计划,进行交通疏导,以减轻轨道交通施工对城市交通造成的区域性影响。

(2)对于施工区域围挡占用或影响的道路,根据可利用的道路资源情况分析,进行施工期间的路权分配,并重新明确设置标志标线,使得该区域各类方式交通出行行有其道,并确保安全畅通。

(3)在施工期间加强交通管理的工作力度,对于违规行为进行依法处理,以保障交通秩序。

3、对于施工围挡区域出入通道进行统筹规划,满足围挡地块居民出行需求。

轨道交通站点均设置于重要的人流集散地区,其站点建设围挡区域必为交通出行密集区,为保障围挡施工的顺利进行,围挡区域出入通道不能依原通道设置,因此围挡区域居民的出行需求需通过统筹设置出入通道解决。该项方案设计是交通疏解方案中不可缺少的一环。

4、大力宣传轨道交通施工疏解

轨道交通施工期间,人民生活将不可避免的受到影响,尤其是交通出行方面的问题,将成为市民生活被影响的重要表现。因此大力宣传轨道交通工程建设意义及交通疏解方案的具体内容,不仅能够使市民理解、支持轨道交通的建设,更能够在实际行动中缓解施工对城市交通秩序的影响。

5、建立风险点动态管理档案

风险点动态管理档案应包括以下内容:重大风险点预防控制方案和应急预案的编制,其中包括不同施工阶段重大风险点的识别、专项预案、应急预案,以及执行程序、组织机构、物资设备情况、相关单位及人员的联系方式等。方案的审批记录;风险点实施前的准备情况记录。风险点实施过程记录。所有风险点规避结束后的经验教训总结,包括:风险点周围环境的情况、主要的施工方法、规避所用的时间、监控量测数据及其他有关数据、风险通过过程中的施工技术措施和方案实施情况等。

(四)相关部门衔接

轨道交通建设期间的交通疏解工程是一个复杂的系统工程,涉及面之广、协调难度之大,在各种交通疏解中都是少见的。因此该项工程需要综合协调多个部门及建设地块周边用地单位。

四、结语

以轨道交通为解决城市交通问题的每一个城市都面临一个临时性的严峻考验—在轨道交通施工期间顺利完成轨道建设和城市交通的正常运行。期间相关各部门的研究人员都将面对一个个具体问题,在实践中需要综合协调处理多种因素,量体裁衣,使得施工的各阶段、各区域都能够得到有效的交通疏解,才能在这个特殊的建设阶段同时保证建设与区域的正常发展。

参考文献:

第6篇:道路与轨道交通工程范文

[关键词] 城市轨道交通,线网规划,枢纽,锚固,原则

1. 引言

城市轨道交通是大城市公共客运交通的骨干,是大众化、大运量、独立专用轨道的城市客运系统。自1863年世界第一条地铁在伦敦诞生以来,城市轨道交通的发展已经走过了146年的历程。我国虽然在20世纪60年代就开始规划建设地铁,但真正开始规模化建设城市轨道交通还只有十几年的时间。当前,我国已进入了城市轨道交通快速发展时期,截至目前,我国有40余座城市在建或筹建城市轨道交通设施,已获批的15座城市规划在2015年之前建设1700km的城市轨道交通,加上目前在建的线路,我国城市轨道交通里程将超过3400km[1]。

考虑到我国城市轨道交通的超常发展速度,以及对城市建设和规划发展明显的导向作用,必须对城市轨道交通线网进行合理的规划及优化。

结合不同的城市特征和经济发展背景,创建一个等级划分明确、编织质量良好的城市轨道交通线网,将对城市活动和城市功能的发挥呈现出巨大的支撑作用,对优化城市用地空间起到积极的引导作用。在规划线网中,多种交通模式相互衔接的大型换乘枢纽对轨道交通线网骨架和城市发展具有“锚固”作用,意义十分重大。

2. 城市轨道交通线网规划的基本原则

城市轨道交通线网规划中,首先需要明确的是线网规划的基本原则有哪些。在此基础上,才能充分发挥“枢纽锚固全网”的轨道交通网络优化理论的作用,对城市轨道交通线网进行优化。

城市轨道交通线路规划是城市交通网络规划的一部分。从总体上讲,城市轨道交通网络规划是城市总体规划中的专项规划,是宏观控制性规划和指导性的实施规划,也是近远兼顾的长远性规划。轨道交通网络规划的指导思想是“依据总体规划、支持总体规划、超前总体规划、回归总体规划”。

具体来讲,进行城市轨道交通线路规划时应遵循如下原则[2]:(1)线网中的规划线路走向应与城市交通中的主客流相一致。(2)线网规划要与城市发展规划紧密结合,并适当留有发展的可能性。(3)规划线路要尽量沿城市干道布设。(4)线网中的线路布置要均匀,线网密度要适当,乘客换乘方便、换乘次数少。(5)线网要与城市公共交通网衔接配合好,以充分发挥各自优势,为乘客提供优质交通服务。(6)线网中各条规划线上的客运负荷要尽量均匀,避免个别线路负荷过大或过小的现象。(7)在选择线路走向时,应考虑沿线地面建筑的情况,要注意保护国家重点历史文物古迹和保护环境。(8)车辆段(场)是快速轨道交通的车辆停放和检修的基地,在规划线路时,一定要同时规划好其位置和用地范围。(9)环线的设置要因地制宜,不可生搬硬套。(10)在确定线网规划中的线路修建程序时,要与城市建筑计划和旧城改造计划相结合。

3. 线网优化的重大节点(枢纽)锚固网络原则

3.1 重大节点(枢纽)锚固网络原则的含义

“重大节点(枢纽)锚固网络”的轨道交通网络优化理论是指在进行线网优化时,首先应根据交通集散点的分布情况,确定不同等级和不同类型枢纽的布局,然后根据枢纽布局调整网络,以满足各集散点之间的交通联系。

重大节点(枢纽)锚固网络原则非常类似于铁路选线中的坚持重大工程优先选址原则。“重大工程优先选址”的选线原则是指在首先进行多方案比选确定重大桥梁、隧道工程的位置处于优势工程地质、水文地质、环境地质条件的前提下,再进行两端连接线路方案的综合性技术经济比选,这样选择确定的线路方案才具有可行性、可靠性[3]。

3.2 坚持重大节点(枢纽)锚固网络原则的意义

坚持重大节点(枢纽)锚固网络原则,对于支持城市总体规划战略发展、支持交通发展战略的实现、保障出行时间和高度可达性、改善城市居民出行条件具有重要的意义。特别是随着我国经济的稳步发展,城市轨道交通线网日趋完善,网络效应越加明显,坚持重大节点(枢纽)锚固网络原则更为重要。如图1所示的北京市2050年轨道交通线网规划方案,“棋盘+放射状”的网络已经形成,重大节点(枢纽)数目较多,在线网优化中更应该坚持重大节点(枢纽)锚固网络原则。

3.3 重大节点(枢纽)锚固网络原则涉及的主要问题

重大节点(枢纽)锚固网络原则首当其冲的问题是确定不同等级不同类型的重大节点(枢纽)的合理位置,在枢纽位置基本确定、线网被锚固之后,可能会涉及其它一些问题,例如如何规划高质量的轨道交通换乘枢纽、局部线路走向的调整、端部延伸以及与国铁的衔接等。

(1)重大节点(枢纽)位置的合理确定

在线路基本走向确定之后,利用大客流集散点(大型住宅区、商业中心、娱乐中心等)、交通枢纽(公交枢纽,火车站、长途汽车站等)和换乘站点等及进行线路锚固尤为重要。这样不仅充分体现出轨道交通“以人为本”的换乘设计理念,充分发挥出轨道交通网络功能与方便、快捷的服务特色,而且为线路走向的深化提供了依据和基础。例如,上海市轨道交通1号线一期工程[4],将上海南路、八万人体育场、徐家汇、人民广场及铁路上海站等大客流集散点作为必经的控制点,为解决上海火车站至漕河泾的南北客流交通发挥了重要作用。

图1 北京市2050年轨道交通线网规划方案

(2)规划高质量的轨道交通换乘枢纽

重大节点(枢纽)位置确定之后,随之而来的问题是规划高质量的轨道交通换乘枢纽。在优化线网连接性的条件下,采用至少汇集两条以上轨道交通线路形成大型换乘枢纽结构的理念,以便优化乘客出行的可能性和便利性,有效支持城市的发展,贯彻落实交通引导发展(TOD)的模式。

另外,为了缩短线路间换乘的距离,提高换乘的便利性,方便枢纽工程的实施,有必要优化换乘枢纽的组织,尽可能使线路同层布设,减少换乘的层面,控制车站埋设深度。

(3)局部线路走向的调整

根据重大节点(枢纽)的位置情况,可以对线路的局部走向进行调整。调整过程中主要考虑的是一些其它原则,如保护历史性建筑和一些标志性建筑、结合三维开发保护空间、结合地形、地质现状等。

(4)端部延伸以及与国铁的衔接

轨道交通线路最突出的特点之一是可持续性发展。因此,轨道交通线路依据城市规划及城市发展状况,应当考虑线路端部有无延伸条件。另外还要考虑能否和国铁衔接的问题,有条件时可与国铁直接衔接,实现城市轨道交通与国铁之间的资源共享,无条件时要考虑远期衔接问题,预留接口。

4. 结语

综上所述,随着我国经济和社会的发展和城市化进程的加快,在城市轨道交通建设过程中,坚持重大节点(枢纽)锚固网络原则,对于线网的合理优化、引导城市发展、调整城市布局具有重要作用。

参考文献:

[1] 毕湘利.从可持续发展角度谈城市轨道交通的规划和设计[J].城市轨道交通研究,2008(12):1-4.

[2] 施仲衡 等.地下铁道设计与施工[M].陕西:陕西科学技术出版社,2006.3-4.

[3] 朱颖.铁路选线理念的创新与实践[J].铁道工程学报,2009(6):1-5.

第7篇:道路与轨道交通工程范文

     关键词: 城市轨道交通; 共轨运行系统; 轻轨发展模式

1 引言

      发展快速轨道交通是解决大城市交通问题的根本途径, 这一点已为我国多数大城市所共识。但是, 由于城市轨道交通项目(特别是地铁) 的投资巨大, 许多城市难以解决建设资金问题, 这在很大程度上制约了城市轨道交通的发展。同样的问题也曾困扰过欧洲和北美的一些大城市。近二十年来, 这些城市通过采用轻轨与市区铁路共轨运行的新模式, 充分利用既有铁路资源发展城市轨道交通, 大幅度降低了系统造价, 较好地解决了城市交通问题, 其成功经验值得借鉴。

2 国外发展轻轨与铁路共轨运行系统的经验

      轻轨与铁路共轨运行是指轻轨车辆与铁路车辆共同利用既有铁路轨道运行, 是一种有别于传统轻轨的新的运营模式。目前, 美国、德国、法国等国家的十多个城市拥有这种共轨运行系统。其中比较有代表性的是德国的卡尔斯鲁厄和美国的圣迭哥。下面分别对这两个城市的共轨运行系统进行介绍。

211 德国卡尔斯鲁厄的共轨运行系统

      卡尔斯鲁厄是德国巴登-符腾堡州的一个重要的工业城市, 市区人口27 万, 其中就业人口1417 万。为了解决市区与郊区间的通勤出行问题, 卡尔斯鲁厄提出了将现有的铁路线路与市内轻轨线路接通的计划, 这样就可以从市区直接通过轨道交通方式到达城市地区[ 1 ] 。

      1992 年9 月, 卡尔斯鲁厄轻轨与铁路共轨运行的计划实现。整个计划的投资很低, 只有8000 万马克, 其中购置车辆费用为3600 万马克。德国西门子等公司为这条线路专门设计了双系统轻轨车辆, 可以在原有轻轨的750v 直流电和电气化铁路15kv 交流电两种供电模式下运行[ 2 ], 卡尔斯鲁厄因此也成为了世界上第一个采用双电流制轻轨系统的城市。

      这条轻轨线路的运营时间从早上4: 30 到次日凌晨1: 00, 行车间隔为20m in, 运营速度约为40km 65533; h。共轨运营系统对原有铁路信号系统进行了改造, 同时线路沿线所有的交叉口都采取信号管制措施, 以保证行车安全。这条线路开通以后, 成为通勤出行的理想方式, 吸引了大量的乘客。系统运营初期的客流量为2 000 人次65533;日, 1999 年末, 客流量增加了600% , 达到14 000 人次?日。

      共轨运行系统在卡尔斯鲁厄的成功可以称为是城市交通与铁路相结合的新时代的开端。这种运行方式在欧洲被称为“ 卡尔斯鲁厄模式”, 并引起了其他欧洲城市的广泛关注[ 3 ] 。

212 美国圣迭哥的共轨运行系统

      圣迭哥是美国加里福尼亚州南部重要的港口城市和工商业中心, 人口110 万。1979 年, 圣迭哥市购买了从圣迭哥市区到墨西哥边境的一条货运铁路的产权, 这条铁路从1976 年被飓风破坏后一直废弃。圣迭哥市于1979 年1 月开始对其按照轻轨技术规范进行电气化改造, 1981 年7 月通车运营。整个轻轨线路全长2517km , 工程总投资仅为8 600 万美元, 其中购买铁路产权1 800 万美元, 轻轨车辆购置费为1 140 万美元[ 4 ] 。圣迭哥轻轨系统采用的是u2 和sd100 型轻轨车辆, 供电模式为600v 直流电。线路的行车间隔为 h, 市区20km ? 15m in, 平均运行速度为郊区60km ?h。1982 年的客运量为1115 万人次65533;日, 周末可达到117 万人次65533;日。

      1984 年, 这条线路增设了短途铁路货运服务。货运列车由内燃机车牵引, 因此不必进行轻轨车辆和线路供电设施的改造就实现了共轨运行。在两者运行时间划分上, 轻轨运行时间为早上5: 00 到次日凌晨1: 00, 其余时段为铁路运行时间。圣迭哥市通过采用上述方式发展轻轨系统, 成为美国修建轻轨的第一座城市。目前圣迭哥的轻轨网络已达到4618km , 平均日运送乘客80 000 人次。除了圣迭哥, 美国的巴尔的摩、盐湖城、斯克兰顿等城市也通过利用已有的市区铁路线路发展了共轨运行的轻轨系统[ 5 ] 。 213 国外共轨运行系统的特点

通过对前述两个典型共轨运行系统的介绍, 可以看出国外的共轨运行系统具有如下特点:

(1) 投资少, 建设周期短。共轨运行系统能充分利用既有铁路线路的用地、轨道等设施, 土建工程非常有限, 平均造价一般不到常规轻轨线路的1? 而且工期大幅度缩短, 可以迅速地发挥轨道交通的效用。

(2) 充分发挥既有铁路资源的潜能。一般的城市都具有一定数量的铁路货运线路, 但运量不大或已完全废弃。共轨运行的方式使轻轨与铁路共享线路资源, 在不影响铁路货运的前提下, 充分发挥了铁路的运量潜能。

(3) 改善城市公共交通状况。共轨运行系统具有轻轨速度快, 客运量较大的优点, 可以有效地改善城市公共交通的状况。同时共轨运行系统本身具有铁路运输的特点, 有利于与城际铁路、市郊铁路等交通方式的换乘, 是城市周边地区到市区通勤出行的理想方式。

(4) 双系统轻轨车辆购置和维护费用较高。如表1 所示, 共轨运行系统如果使用双系统轻轨车辆, 则车辆购置与维护的费用较高。如果采用在铁路沿线架设电缆, 使用常规轻轨车辆的方式, 则不存在这类问题。系统名称建设日期线路全长? 利用线路总投资日平均共轨运行模式 km 客运量卡尔斯鲁厄轻轨1991~ 199219 24 运营中的8000 万14 000 采用双系统(德国) 电气化铁路德国马克轻轨车辆废弃的8600 万客货车(美国) 圣地亚哥轻轨197911~ 198117 2517 货运铁路(未电化) 美元11 500 分时段运行通过上述的分析可以看出, 轻轨与铁路共轨运行是一种经济的运行方式。虽然它还存在一定缺陷, 但欧美各国的成功经验表明它是一种较理想的城市交通方式, 有巨大的发展潜力。

3 国内利用铁路资源开发轨道交通系统的现状

      我国利用铁路资源开发城市轨道交通系统的实践开始于1997 年建设的上海轨道交通明珠线。明珠线一期工程利用了已废弃的淞沪铁路和沪杭铁路内环线的走廊, 采用高架方式敷设线路; 北京于1999 年开工建设的城市铁路13 号线, 利用了铁路京包线、东北内环线以及望和支线的走廊, 平行修建轨道交通线 路; 正在建设的武汉轻轨1 号线, 则是利用已废弃的京汉铁路旧线走廊, 修建了全高架的轻轨系统。表2 所示的是这三条线路的基本建设情况。

表2

国内利用铁路资源开发的城市轨道项目

      可以看到, 由于合理地利用了铁路资源, 三条线路的平均造价比地铁要低, 每千米在115~ 310 亿元, 建设周期也相对较短。这三条线路对铁路资源的利用方式主要是铁路走廊的利用, 而对于利用铁路轨道建设共轨运行的轻轨系统, 国内目前还没有先例。

4 国内发展轻轨与铁路共轨运行系统的可行性分析

      结合国外发展共轨运行系统的经验和国内的现状, 从技术、经济、政策三个方面对在我国发展轻轨与铁路共轨运行系统的可行性进行简要的分析。

411 技术可行性分析

      我国的多数大城市都拥有一定规模的专用线、联络线、支线等铁路线路。随着地方工业企业结构性调整和铁路生产布局的调整, 这些线路的利用率在逐年下降, 有的甚至已经完全处于闲置状态[ 6 ] 。我国铁路专用线通常是按照能满足年货运量150 万吨的要求进行设计的, 其线路允许轴重、平纵断面条件、线路允许速度、限界等均能满足城市轻轨的设计标准[ 7 ] 。对这些线路加以技术改造后, 完全可以建设成共轨运行的轻轨系统。在这方面, 国外共轨运行系统以及国内利用铁路资源开发轨道交通的成功经验可供借鉴。

      另一方面, 我国的铁路部门在勘测设计、施工建设、机车车辆、通信信号、运输组织、技术规章、教育培训等方面具有全面的专业优势和丰富的实践经验, 完全能保证共轨运行系统的技术需要。事实上, 铁路的一些设计院、工程局等单位已经为许多城市的轨道交通工程作出过卓越的贡献。

      成功实施共轨运行的关键是车辆技术, 这也是整个系统投资较多的一个方面。如果采用德国模式的双系统轻轨车辆, 我国现阶段的技术力量还不能完全自行解决。在这方面, 应该以提高轨道交通设备国产化程度为原则, 通过自主研发、技术引进、合资生产等多种方式努力提高国产轻轨车辆的制造水平。如果车辆的问题能够得到妥善解决, 那么我国发展共轨运行系统在技术方面将是可行的。

412 经济可行性分析

      国内已有的地铁建设项目造价一直居高不下, 最高的平均造价已达到每千米8 亿元人民币。如此高昂的投资, 国家和所在城市的财政很难负担, 这在很大程度上制约了我国城市轨道交通的发展。一般来说, 土建工程的投资占整个城市轨道交通项目总投资的60% 左右[ 8 ], 地铁难以大幅度降低造价的主要原因就是土建工程的投资过大。而利用既有铁路线路建设共轨运行系统, 沿线拆迁量小, 线路与结构工程的投入也很有限, 因此整个系统的投资可以大幅度降低。同时共轨运行系统还具有建设速度快、工期短的优点, 能够适应城市交通发展的迫切需要。

      此外, 由于铁路对城市的分割作用, 铁路沿线一般都是城市中经济相对欠发达、居住环境较差的地带。修建与这些铁路线路共轨运行的轻轨系统, 对于沿线土地开发、旧城改造和经济发展等都会起到积极的促进作用。

      国外的经验表明, 共轨运行系统以其快捷、舒适、安全的优点, 能够吸引大量的乘客, 特别是城市周边地区到市区的通勤乘客。如果制定合理的票价, 可以保证正常运营乃至赢利。共轨运行轻轨是运量介于地铁和公共汽车之间的一种中运量轨道交通系统, 其客运量相比地铁要小。但由于其投资少, 建设周期短, 可以有效地缩短投资回收期, 降低投资风险, 项目筹资的可能性也更大。对于一些经济并非十分发达, 又具有较大交通压力的城市来说, 共轨运行系统无疑是更理想的选择。

413 政策可行性分析

      受传统管理体制影响, 我国的城市轨道交通作为城市建设的一个方面, 一般由城市政府和建设部门管辖。而城市的铁路网络则属国家所有, 由铁路系统的路局、分局经营。如果铁路部门能利用资源优势介入大城市的公共交通系统, 则既能盘活铁路资产, 创造新的经济增长点, 又能实现交通资源的整体优化配置, 促进城市交通的发展。在这方面, 上海轨道交通明珠线的建设是一个成功的先例。明珠线由上海市政府和上海铁路局等共同组建的股份制公司建设运营。上海铁路局成立工程指挥部负责工程实施, 为城市轨道交通项目的快速启动创造了良好的条件; 而以18km 的两条旧铁路线作价入股的5 亿元股权, 也使上海铁路局成为上海轨道交通明珠线发展有限公司的第二大股东[9] 。

      在目前的体制转轨阶段, 这种合作对于充分利用现有条件启动城市轨道交通建设, 节省投资成本, 调动多方积极性加快建设进程, 都很有必要。如果地方政府和铁路部门能在政策上加以推动, 消除一些现存体制、技术标准、管理等方面的障碍, 打破“ 条块分割”的局面, 那么我国发展共轨运行系统在政策方面将是可行的。

5 结语

      通过上述的分析, 结合国外的成功先例和我国的实际情况, 现阶段在我国发展轻轨与铁路共轨运行系统具有一定的可行性。城市交通的可持续发展, 首先应该是经济的可持续发展, 共轨运行系统以其投资小、建设周期短、快捷舒适、运量较大等突出的优点, 为经济并非十分发达的大城市发展快速轨道交通提供了一条新的途径。

      以石家庄市为例, 作为典型的由铁路枢纽发展起来的城市, 其市区内拥有颇具规模的专用线、联络线等铁路线路。由于多方面的原因, 石家庄市区内的货运专用线运量在逐年下降, 部分专用线能力过剩, 设备闲置, 已对铁路部门的整体效益造成一定影响[10] 。而另一方面, 石家庄市目前的城市公共交通状况却不容乐观。为解决这一问题, 2010 年的石家庄市城市交通规划提出了优先发展大容量快速轨道交通系统的发展战略[11 ] 。但在现阶段, 石家庄市还不具备发展这类轨道交通的经济实力。本文探讨的轻轨与市区铁路共轨运行的发展模式, 对石家庄市短期内建设快速轨道交通系统, 尽快缓解城市交通拥挤状况, 具有重要的参考价值。 参考文献

.[1 ] 蔡君时1 世界公共交通[m ]1 上海: 同济大学出版社, 20011115~ 119

[2 ]harry hondius1 卡尔斯鲁厄交通公司和科隆交通公司新型中地板城轨车的比较[j ]1 国外铁道车辆, 2001, 38(4): 5~ 9

[3 ]kuhn a xel1 karlsruhem odel a ttracts europe-w ide interest[j]1railw aym odeller, 1996(1): 17~ 19

.[4 ] 左忠义1 我国发展现代有轨电车系统的探讨[a ]1 见: 苗彦英11999-2001 城市轨道交通论文集[c ]1 北京: 中国铁道出版社, 2002: 245~ 248

[5 ]t 1r 1b1 germ any’s t rack-sharing experience:m ixed u se of rail co rrido rs[r]1 u 1s1a: t 1r 1b1200013: 1~ 40

.[ 6 ] 陆东福1 发挥产业优势, 盘活存量资产——铁路参与城市轨道交通开发建设的思考与实践[j ]1 铁道经济研究, 1999 (2): 26~ 28

.[7 ] 黄冬松, 林磊1 发挥国铁优势, 促进城市轻轨发展[a ]1 见: 苗彦英1 城市轨道交通学术研讨会论文集(1997-1998) [c ] 1 北京: 中国铁道出版社, 1999: 65~ 67

.[8 ] 毛保华, 姜帆, 刘迁等1 城市轨道交通[m ]1 北京: 科学出版社, 20011254~ 258

.[9 ] 刘晓红1 铁路参与发展城市客运市场的必要性和可行性初探[j ]1 铁道车辆, 2000, 8(增刊): 3~ 6

第8篇:道路与轨道交通工程范文

    1、我国城市轨道交通的发展现状。北京于20世纪60年代中期开始建设地铁,是我国轨道交通建设最早的城市。目前,我国编制城市轨道交通建设规划的城市大约有30座,其中北京市规划的轨道交通线路总长有865km;天津市规划的轨道交通线路总长有564km;上海市规划的轨道交通线路有972km;广州规划的轨道交通线路有728km;南京规划的轨道交通线路有543km。我国其他大中型城市的轨道交通线路也处于不断的增加当中。随着我国经济建设的迅速发展和城市化进程的加快,大多数大中型城市迫切需要修建城市轨道交通来缓解城市越来越多大的交通压力,同时因为城市轨道交通具有“安全、方便、快捷、环保”的优点,具有非常大的发展潜力。

    2、我国城市轨道交通存在的主要问题。从国内外众多城市交通建设的实际情况来看,城市轨道交通不但能够极大地缓解巨大的城市交通压力,还能带来很大的社会效益。但从2000年起,我国的城市轨道交通建设就出现了各种各样的问题,其中工程造价过高问题已成为制约我国城市轨道交通建设发展的主要问题之一,已越来越受到政府部门和相关建设企业的高度重视。

    20世纪90年代,我国在北京、上海和广州建成了3条地铁线,平均造价高达5~7亿元/km,相比之下,我国的劳动力和建筑材料价格都比较发达国家和地区要低的多,但是我国的轨道交通工程造价却要比其他国家和地区高很多。

    迫于城市交通的巨大压力,我国大多数城市都急切建设城市轨道交通工程,但因为轨道交通工程造价太高,就形成了这些城市想建设轨道交通但又负担不起成本过高的局面。据2009年中国社会科学院出版的《城市蓝皮书》显示,我国有34座城市的人口在百万以上,其中有11座城市人口在200万以上,有百万以上人口的城市34座,其中超过200万人口的大城市有11座,规划一共需修建2200km轨道交通线路,如果交通线路按每公里花费5.5亿人民币的造价估算的话,一共就需要12100亿元工程建设资金,由于我国目前的财政收入总量有限,工程建设投资主体过于单一,各方面的建设资金不能得到及时的回转,我国根本无法长期承受和支持如此巨大的资金花费,所以说,造价过高已成为阻碍城市轨道交通建设的一个主要问题。

    我国城市轨道交通工程造价的结构分析

    针对我国城市轨道交通工程造价普遍过高的情况,通过对国内外轨道交通工程建设的认真分析,研究出了城市交通工程造价的主要构成部分,其中土建工程(包括拆迁工程、建筑设计、前期工程等)造价约占50%~55%;技术生产设备的购置、安装及保修费用约占50%(机车车辆占13%~17%、轨道占2%~7%、车辆段停车场占5%~6%、通信信号占10%~12%、牵引供电占7%~10%、其他占1%~4%)。从中不难看出,工程造价主要花费在土建工程和技术设备方面,所以降低城市轨道交通工程造价的主要手段就是降低土建工程费用、提高技术设备生产水平,即通过施工前对建设工程进行科学合理的规划,确定其规模的大小,制定完善的管理措施,优化施工方法结构,提高建筑设备的利用效率,才能从根本上达到降低轨道交通建设工程造价的目的。

    通过对北京、上海、广州等已建成的城市轨道交通造价进行综合分析,可知轨道交通工程造价过高的另一个主要原因是预测客流量偏高、列车编组偏长、机电设备利用不科学、技术装备水平落后、车站建设空间过大及车站比较密集等,这些都是直接导致城市轨道交通工程造价过高的主要因素。其中影响最大的还是行车密度,对此可以提高交通信号控制系统的水平,尽量缩短行车间隔,实行小编组高密度,缩短列车的编制长度,减小车站的占用空间,达到降低工程造价的目的。

    降低城市轨道交通项目工程造价的主要措施

    1、做好城市轨道交通网的规划,充分利用交通资源

    (1)城市轨道交通路线都集中于城市中商业发达地区和人口密集地区,有时候不得不拆迁其他建筑物来建设轨道交通工程,而昂贵的拆迁费用也给工程建设带来了极大的困难,比如拆迁北京地铁复八线平均花费接近1.0亿元/km,占工程总造价的16%,明显偏高。所以一定要做好城市轨道交通路线的规划工程,规划时要充分考虑到线路走向、车站、路口、建筑物、以及车辆段对工程施工的影响,合理安排交通路线与这些因素之间的位置关系,只有这样才能够使城市轨道交通的建设与城市发展相融合,把建设造价控制在城市财力情况所能承受的范围内,减少不必要的拆迁,避免重复建设等极度浪费的投入,形成轨道交通建设与城市发展的良好互动。

    (2)轨道交通工程建设时,要合理设计停车场的布置,注重主变电所与控制中心等重要资源对城市交通线路的共享,根据人流量的多少和运营功能的要求来设置车辆段和停车场,确保交通资源能够得到充分的利用,避免资源浪费、增加造价。因此,要以整个轨道交通路线网为基础,合理制定与建设能力相当的建设标准,并完善交通联络线,使多条交通线路能够协调共享车辆段和停车场等资源,还要对车辆运营检测设施进行统一的编制,减少车辆段规模,以达到充分利用交通资源、节省整体造价的目的。

    合理制定建设标准,严格控制建设规模

    (1)城市轨道交通设计的基础是做好客流预测、控制建设规模,它对确定工程规模、工程造价和技术标准有着极其重要的影响。目前地铁设计中经常采用的预测方法是四阶段法,这种方法理论上虽然比较成熟,但对于某个具体项目进行预测时还存在一定的差距,这就要求要根据整个轨道交通线路网络建设的实际情况对预测结果进行合理的修正。从目前的设计标准来看,高峰断面客流对工程建设规模的影响较大,随着城市轨道交通线路网络的逐步完善及换乘点的增加,每条交通线路的客流预测值都要高于实际的高峰断面流量值。因此在设计轨道交通时,要结合实际情况,调整远期的高峰断面流量预测值,使预测的客流量与实际流量基本吻合,使车站的规模、间距和车辆的编组长度符合客流的实际需要,尽量减小轨道交通建设规模,降低工程造价。

    (2)由于地铁线路区间断面要比车站断面小很多,地铁车站的平均工程量大约是区间地铁工程量的10倍,所以,地铁车站的造价往往高出线路区间的造价很多,因此,降低地铁工程造价的关键就是控制好地铁站的建设规模。车站的功能并不是让旅客停留休息的,而是供旅客集散的场所,所以它应该具有简洁、方便旅客进出的特点。建设单位应正确考虑车站的主体功能,减少车站的商业和社会服务功能,制定科学合理的建设标准,控制好车站的建设规模,降低工程造价。

    3、加大我国城市轨道交通技术装备的自主研发力度

    (1)前些年,受我国科技发展的限制,我国主要通过进口来购置地铁技术设备,价格非常昂贵。大量的建设工程实践表明,过分追求国际先进水平,大量采用国外的技术设备,不仅极大地增高了工程造价,还增加了建成后的运营成本。对此,我国应该积极借鉴国外的先进技术经验,加大轨道交通技术设备的自主研发力度,自己设计生产出实用的技术设备,把设备国产化率保持在最高水平,就可大大降低轨道交通工程造价。

    (2)根据我国研发技术的实际情况,不能过快地追求轨道交通技术装备的现代化,运营初期,客流量会逐步的增长,如果过快地追求技术设备的现代化,不但会增加造价成本,还会出现设备维修频率增加、运营初期功能过剩的不足。比如有些城市要求地铁设置环控门,而设置环控门对列车控制和车辆技术提出了很高的要求,相应地提高了造价,性能价格比不高。目前,即使在经济发达的国家,设有环控门的地铁也不普遍,对此可以缓建或不建。

第9篇:道路与轨道交通工程范文

关键词:铁路;道岔施工;注意事项

Abstract: with the development of economy, high-speed rail is also in constant development, the paper discussed the points for attention in construction of railway turnout.

Keywords: railway switch construction; attention;

中图分类号:TU74 文献标识码:A 文章编号:

初期我国由于资金及技术条件的限制,铁路运输保持着单线铁路运行的基本模式,推动了当时铁路交通行业的稳步发展。经过十几年的改革创新,单线铁路行驶的弊端更加显著,无论是列车班次或装载数量都与社会交通的需求不一致,这就需要铁路工程单位做好单线铁路的施工改造,通过道岔施工改变单线行驶的不足。

一、铁路道岔施工的作用

交通是决定经济发展的一个关键因素,特别是对于地方经济发展有着至关重要的推动作用。为了拉动区域经济的快速发展,国家致力于铁路交通工程的投资建设,通过资金等物质支持保障轨道交通的正常运输。单线铁路是轨道交通建设的初期形式,虽然这种单一铁轨为列车运输提供了轨道线路,但从现代交通需求来说,单线行驶有着多方面的弊端[1]。为了优化铁轨线路的运输模式,利用道岔对单线铁路实施改造是很有必要的。现场道岔存放后及时对其保护,用警示绳围圈道岔,树立警示牌,并用彩条布覆盖,防灰尘污染道岔配件及施工车辆碰撞,安排人员昼夜看守。

二、道岔铺设施工的技术要点

道岔铺设位置应按设计铺设,在不影响股道有效长度和不变更其他运营条件下,将道岔铺设位置前后移动不大于6.25m,但在区段站及以上的车站,特别是咽喉区道岔,最大移动量不得大于0.5m。道岔进场后,通知监理单位,共同对道岔进行检查验收,配件是否齐全、轨枕底钢筋变形或脱焊的进行校正、补焊,目测、尺量钢轨长度,是否存在死弯,对存在问题的进行拍照、签认,监理同意后方可使用。具体注意事项包括:

1、间距方面。道岔是一个组合式的应用装备,不同组转构件铺设施工时要控制好道岔的距离标准。道岔铺设钢轨接头处的岔枕间距应当严格的控制,按照标准应于区间轨道同类性钢轨接头处轨枕间距一致,并使轨缝位于间距的中心。为了防止单开道岔的岔枕出现不稳定性,施工过程中应在直股外侧取齐。

2、装置方面。现有道岔装置的种类、型号、功能不一,如图2,主要分析单开的组成部分,选用道岔装置要根据铁路运输的具体要求,保证道岔连接施工取得预期的改造效果。道岔铺设转折器必须扳动灵活。尖轨道尖端应与基本轨密贴[2]。第一连杆处的最小动程应:直尖轨为本142mm,曲尖轨为本152mm,弹性可弯尖轨为180mm。

图2单开岔道

3、误差方面。现场铺设道岔要注意连接处的误差值,不同轨道之间的转辙器、岔心、两根护轨和岔枕等,组装施工时都要严格地控制误差值。道岔铺设轨距允许偏差:有控制锁的尖轨尖端处应为±1mm,其他各部位应为+3mm、-2mm。 查照间隔不得小于1391mm[3]。护背距离不得大于1348mm。

三、新型道岔设备施工的控制

无砟道岔主要由水硬性支撑层、岔枕、道岔钢轨组件和C40道床板混凝土组成,现场施工应输运过程道岔尖轨、基本轨、辙叉组件部分整体运输,其余部分采用分解运输方式。构件装卸采用250t吊车及大刚度、柔性吊带、多吊点专用吊具进行吊装。注意道岔各个结构的安装调试,保证其安装于铁轨上发挥出预期的连接作用。

1、检查。无砟道岔要求在道岔厂内进行预组装,项目部指派技术人员驻厂家与厂方技术人员共同对每组组装好的道岔进行验收检查,检查结果以测试表、检查记录的形式归档,双方共同确认。道岔进场后检查道岔产品在运输过程中是否发生损坏和变形,施工单位应事先对道岔详细检查,确定设备无异常状况才能应用于铁路施工。

2、安装。模板安装前进行杂物清理,这样可以使各个钢构件之间的配合更加紧密。安装用槽钢加工制造的侧向模板,并设置加固装置,转辙器位置标高用木模控制。根据设计图纸对道床板排水坡的要求,在岔枕上弹好墨线;道床板两边高程的控制用墨线在钢模上弹好,为方便夜间施工好辨认墨线,在墨线的边上贴好厚的双面胶[4]。

3、调试。无砟道岔安装结束,现场需立即安排技术人员进行调试处理,检查道岔在铁路线路中能否发挥出预期的连接功能。道岔调试可分次进行,首次是利用锚固螺栓调整轨距,按照水平方向调节,必须保证高程、水平、轨距偏差等各误差值控制在±1mm。其次,模板结束后,再次对轨距检查,重新调试道岔安装精度在有效范围内。

四、施工期间其它的注意事项

科学发展观对交通行业发展提供了先进的指导,国家对于铁路工程设施改造给予了高度的重视。单线铁路向复线铁路实施改造是必然的趋势,由于道岔设备的特殊性,施工单位应拟定切实可靠的安装措施,保证道岔在铁路连接中发挥出良好的调控作用。无论是从国内交通运输需求或交通设施改造角度考虑,兴建铁路线路是社会现代化建设的基本要求,也是推动社会经济发展的重要条件。

1、防害措施。车轮在通过辙叉时,从两根翼轨的最窄处到辙叉心的最尖端之间有一段空隙,这就是道岔的有害空间。长期铁路运输证明,车辆运行至道岔接口易出现多种病害,均是因道岔空间而造成了不利影响。例如,车轮通过此处时,有可能因走错辙叉槽而引起脱轨,这将引起极其危害的交通事故。设置护轨的目的也就在此,它要强制引导车轮的运行方向。

2、评估措施。道岔调整工作完成后,根据现场道岔精调情况,提出申请,由业主组织设计、监理、外方专家、施工等单位组成检查组,对道岔的钢筋及接地、模板、支撑体系、加固措施、几何线性、最后一次精调数据等进行全面检查与评估。各项工作满足设计要求并具备混凝土浇筑施工条件时,方可进行后序工作施工。

3、更新措施。主要是对道岔结构进行更新调整,换用最新型的道岔作为连接装置,这是保证铁路运输畅通性的要求。活动心轨最主要的特点是辙叉心轨可以板动。当我们要开通某一方向股道时,活动心轨的辙叉心轨就与开通方向一致的翼轨密贴。消灭了道岔有害空间,行车更加平稳,过岔速度限制较小,因而特别适合运量大,需要开行高速列车的线路使用。

4、固定措施。旧道岔连接处需实施必要的固定措施,使用钢结构作为固定件以维持铁轨的稳定性。道岔的护轨固定型辙叉的重要组成部分,设于固定辙叉的两侧。施工期间,应考虑护轨装置的固定安装,掌握好控制车轮运行方向,参照铁路工程标准添加安全防护措施。防止其在辙叉有害空间冲击或爬上辙叉心轨尖端,保证行车安全的重要设备。

结束语

铁路是现代交通运输网络的基本构成,铁路交通关系着我国整个交通行业的发展进程,对带动区域经济进步具有多方面的保障作用。道岔作为机车车辆从一股道道转入另一股道的连接设备,安装施工前后必须注重操作流程的控制,严格按照标准规定执行操作。

参考文献

[1]徐品化.我国单线铁路应用现状的调查分析[J].山西建筑,2011,40(20):79-81.

[2]陈朝玉.新时期铁路道岔施工常见的病害处理[J].城市建设理论,2011,18(3):13-15.