公务员期刊网 精选范文 协同通信范文

协同通信精选(九篇)

协同通信

第1篇:协同通信范文

1无线通信系统中的协同传输技术的主要方式

随着无线通信系统的摄入研究,协同通信技术逐渐可以简述为中继技术。协同传输技术的发展和演变过程主要为:协同传输技术中的单一数据流传输、复杂数据流传输、研究分析无线通信系统中的协同传输技术、协同传输技术中的上层协议设计。

1.1协同传输技术中的单一数据流传输

协同传输技术中最简单的传输方式就是单一数据流传输,包括放大传输、解码传输和压缩传输。单一的数据流传输只包括了一个信源,一个接收端和一个中继。数据通过中继在信源和接收端之间进行通信,中继只是一个辅助作用,而放大传输则是将数据的信息更加简单化和清晰化地发送给接收端;解码传输协议是在中继即协同终端的辅助下将接收到的信号解码后对其重新编码,再将编好的信号发送给接收端;压缩传输则相反,需要通过协同终端将信号压缩后再重新发送给接收端,通过这些方式进行协同传输可以更好地达到很好的分集效果。但是在传输信号时,发送信号的各个环节的进度要一致即同步同时地进行,这在系统的实际操作中有一定的难度。因此,在进行传输时要根据实际情况进行选择,协议产生的成本也会相应地提高。

1.2协同传输技术中的复杂数据流传输

复杂数据流传输主要针对多用户需要同时发送多种数据的情况。单一数据的协同传输在很好地分集的同时,也存在着缺点,即效率低的问题。而在实际操作中,种种因素一定程度上也制约着单一数据协同传输,协同终端只能进行一项数据的接收和发送,而无法同时转发其他的信号,因此,为了进一步提高效率,将网络编码运用到多数据的协同传输中,大大提高了中继传输技术。将这一多数据协同传输方式运用到无线通信系统中,也大大提高了信号传输的同时性。多数据针对无线通信系统的广播性,在协同终端对多用户的数据进行异或编码再传输给接收端,利用节省传输时间创造出的间隙同时操作加快了传输效率。

1.3协同传输技术中的上层协议设计

单一数据的协同传输和多数据的协同传输的协议方式主要运用了物理性的处理信号的渠道,在实际的无线通信系统中,上层协议也在实现协同传输的实践中起到了重要的作用。上层协议作为一项重要的研究方向,同时结合了物理性和ARQ两种协同传输,这样,中继可以同时监察信源与接收端的数据传输和通信,即当接收端发生错误时,可以通过发送特殊信号之后,中继再进一步将之前接收的数据再转发给接收端。上层协议设计也可以减少能耗,加大无线网络信号的传输量。

2无线通信系统中的协同传输技术几种协议的基本原理

2.1放大型协同传输

放大型的协同传输可以通过一个比较典型的协同通信系统来实现,假设信源为S,协同终端即中继为R,接收端则为D,借助中继R的辅助协同,连接信源S 与接收端D之间的无线通信,无线系统主要采用的模式为时分双工。放大传输实现的基本原理为:在某个个时间间隙,信源S直接发送信号给接收端D,协同终端R借助无线通信轨道的广播性监听到了这个信号,接着将接收到的信号进行放大之后再传输给接收端。一般要计算放大传输的放大因子时得出的值是根据接收端的信号实现最大比合并后的最佳值。

2.2解码型协同传输

和放大型协同传输相比较,解码型协同传输的区别在于协同终端R采取了不同的方式来处理接收到的信号。简单来说,解码型协同传输主要是解调和解码,进行判断后再决定是否决定传输信号,即解码正确就可以将接收到的信号进行重新编码再传输给接收端D,解码错误后,协同终端R拒绝参加协同,也不发送接收到的信号给接收端D。如果解码后不对信号进行判断正确与否,就有可能存在误差传播的错误。

2.3以异域为基础的网络编码型协同传输

根据单一数据的协同传输中的介绍,放大型和解码型的协同传输主要应用于单一数据流的协同传输。针对简单的单一数据的传输,以异域为基础的网络编码型协同传输通过协同终端R在进行通信的基本原理是:运用时分双工的模式,不同于传统的四个时隙的中继传输,异域网络编码简化为三个时隙,即用户A和用户B可以发送信号给协同终端R,协同终端同时将接收到的信号进行解码再重新编码进行发送,这样可以减少传输的时间,提高效率。

2.4以放大型传输为基础的双向协同协同终端传输

与直接传输相比,以异域为基础的网络编码型协同传输仍然存在效率低的问题,而以放大型传输为基础的双向协同协同终端传输仅仅可以用两个时隙提高了效率,基本原理为:在第一个时隙,协同终端R可以同时接收到用户A和B发送的信号,而在第二个时隙,协同终端R将接收到的信号传输给用户A和B,这样就在一定程度上节约了一半的时隙。

第2篇:协同通信范文

关键词:电子技术;通信工程;协同进步

当前,人类社会已经进入到了信息社会中,所以必须要有能够与之相适应的传播技术,古代我们还在使用信鸽传递信息的方式,但是当前,我国的信息化建设质量越来越高,这期间也经过了很长时间的革命,信息传播技术的发展中,电子技术的发展起到了不容忽视的作用,所以二者之间有着十分密切的关系,它们的发展和进步实际上有着一定的同步性。

1 电子技术

1.1 电子技术概述

电子技术通常就是指应用电子学的相关原理对电路和电子元件设备进行设计从而解决生产和生活中实际问题的一种技术方法,这种技术一般情况下分为两大类,一种是电力电子技术,一种是信息电子技术,对于电子信息而言,最主要的体现就是信息处理上,电子信息的发展极大的促进了科学技术的进步,电子技术的发展使得计算机技术和集成电路技术出现在人类社会当中,同时还在不断的发展和进步,这种技术的不断进步也对通信技术的发展起到了十分重要的作用。当前的电子技术又有了很大的进步,并且正在朝着更为先进的光子技术方向发展,这一技术也是微电子技术发展的一个重要的平台和保障,同时在当今技术发展趋势的角度上来看,光子技术和电子技术正在不断的融合,在未来的发展中全光化已经成为一种必然的发展趋势,同时信息技术也在不断的发展和进步,促进了数字化和信息化的发展和建设。

1.2信息电子技术的应用及其在汽车领域的发展

在当今这样一个飞速发展的时代,网络技术的发展可谓日新月异,所以这种趋势也给电子信息技术的应用提供了十分有利的契机,同时已经在很多领域取得了非常好的效果,举例来说,环保机构在进行环境质量检测工作中,采用电子信息技术能够有效的对环境的污染现象进行有效的检测和分析,同时还可以选择相应的措施对该情况进行有效的治理。但是在众多领域中,汽车领域的应用可谓是最为常见的,由于该技术的发展,也逐渐出现了电子汽车,在汽车元件的性能上都有了很大的改善,出现了自动档汽车,无论是车辆的性能还是车辆故障的诊断都有了很大的发展,所以该技术的发展也推动了汽车业的进步。

1.3 电力电子技术的应用于发展

电力电子技术在很多领域都有着广泛的应用,但是在应用的过程中需要解决的一个重要的问题就是电力供应问题,这也是电力电子技术发展过程中的一个主要的方向,电力电子技术在应用中能够体现出非常好的节能高效的特征,所以在实际的应用中能够得到很好的效果。

2 通信技术

2.1 通信工程概述

通信工程重点要完成的是对信息输入的处理和相关信号的处理,所以这项技术也和人们的日常生产和生活有着十分重要的联系,所以通信工程的发展也受到了人们的重视,在我国通信工程的发展中逐渐出现了光纤通信、数字移动通信等等。

2.2 通信工程的作用和应用

通信工程主要要完成的就是信息的传递和交换。我国各个行业的发展中都和信息有着非常密切的关联,通信工程在人们日常的信息交流中发挥着十分重要的作用,在医学、电信、多媒体图像处理等方面都发挥着十分重要的作用。

3 电子技术与通信工程的协同发展

3.1 电子技术推动通信技术发展

在通信技术发展的过程中,电子技术发挥着十分重要的作用,通信技术的每一次进步基本上都要有电子技术的参与,交换设备是通信措施中的一个重要的组成部分,这也是信息工程发展中的一个障碍性因素。正式因为电子技术的发展才使得整个通信工程能够得以更好的发展。

3.2 通信工程对电子技术的推进作用

通信工程对电子技术的发展也起着一定的推进作用。首先,通信技术的发展进一步简化了信息交换的过程,使更大范围内信息的广泛传播成为可能,强化了知识的交流与沟通。这无疑为更大范围内电子技术知识的传播创造了条件,进而推进电子技术的进步与发展其次,通信技术的不断进步对于电子技术有着更高的要求,这就使得人们不得不创造出新的电子技术来同新的通信技术要求相适应。可以说,正是在通信技术不断发展的影响下,电子技术才得以进一步发展。

3.3 计算机对于电子技术与通信工程的关键作用

计算机的出现对于通信工程的进步与发展有着极为特殊的意义。通过计算机的应用,来对各项交换机工程进行编程,进而存储于计算机存储器当中。这样在系统操作作出改变时,就不需要对交换设备进行改变,只需进行程序指令的改变即可。这一形式的交换机系统被称为程控交换机,具有灵活性大、便于新通信业务开发、能够提供给多种服务项目等优势。同时,计算机的不断发展,开始逐渐为通信技术终端设备承担着信号发出与接收的任务,并在现代社会得到了广泛的应用。因此,对于电子技术的发展来说,计算机同样扮演着十分关键的角色。计算机技术的高速发展不但成就了信息社会,也成为电源技术得以迅速发展的有力支撑。20世纪 80年代,开关电源为计算机全面采用,接着电子、电气设备领域相继引入开关电源技术,之后,计算机技术又提出了绿色电源的概念。

3.4 电子技术与通信技术的协同发展成果

电子技术与通信技术的有机结合,在社会生活领域得到了迅速的发展,包括:个人通信与移动通信,多媒体通信,图像通信与图像处理,微电子系统的设计、制备,集成电路的设计、制造,信号的处理与应用,光通信、卫星通信,离子束、电子束及显示工程,电子设计自动化技术,真空电子工程,微波技术,通信与测量系统电路技术,散射、辐射与微波传输,宽带通信及宽带通信网,微波元器件,微波电路,光纤通信工程与光电子学,微波工程,信息光电子工程,光电子与电子器件,语音处理与人机交互,纳米技术与材料等领域。电子技术与通信技术所拥有的高度广泛性,使其获得了国家的关注,国家已经培养了大量理论基础扎实,具有创新开拓精神,能够在通信网络、通信与通信技术、电子信息技术领域中从事设计、科研、开发、运营的专门型高级人才,为电子技术与通信技术的应用拓宽与进一步发展积蓄了坚实的人员基础,进而促进我国信息产业长足、稳定的发展。

4、结语

在很多领域中,电子技术和通信工程都存在着共进退的关系,可以说只有二者能够共同的发展和进步,我国的科学技术才能有更为强大的发展基础,所以在技术发展中对两者都应该予以一定的重视,这样才能更好的促进我国相关产业的发展和进步。

参考文献

第3篇:协同通信范文

关键词:射频识别;门禁控制;标签;分散式

中图分类号:TP274 文献标识码:A 文章编号:2095-1302(2013)06-0062-03

0 引 言

随着社会的进步,信息技术的飞速发展,公司和家庭的安全防护逐渐被人们所重视,数字化安防慢慢地深入到了人们的生活中。数字化安防集成了现代模拟传感器感知技术、数字电平转换技术、信息处理传输技术、多媒体技术、网络对接技术等多方面前沿科技,实现了安防功能精细化,为使用者提供了更为安全便捷的防范体系。

信息识别是门禁控制系统中的核心技术,主要表现为信号数据的采集、传输、存储和对比分析。人工数据采集分析是传统的操作方式,由于现代对数据传输速度和准确度的高要求,人工数据采集已经满足不了实际需求。微电子技术中自动识别技术的快速发展填补了这一空缺,它与计算机技术结合,可以快速准确地完成大量数据的采集传输。另外,随着Internet技术的发展和普及,网络化也成为门禁控制系统中的一大发展特点。

1 需求分析

从设计的应用领域和功能特点出发,门禁控制系统的核心自动识别技术可以分为条形码、生物识别、磁卡类识别和无线射频识别。与其他三种识别技术相比,射频识别技术优势突出。首先,RFID是一种电磁技术,无接触点,阅读器可在短时间内完成多个标签的识别。第二,射频卡设计尺寸可小到几厘米,对应用场所的空间、长度无限制。第三,对光源无要求、无干扰,可在强光或无光环境下正常使用。第四,无线电有穿透性,应用范围更广,且可回收循环使用。目前,射频识别技术在世界范围内已被广泛应用于物流、制造业、身份识别、防伪、资产管理、交通、食品、动物识别、图书馆、汽车、航空及军事领域,被誉为是“对人类未来生活产生深远影响的十大新技术之一”。

本文的门禁控制系统是在充分利用射频识别技术的基础上设计完成的。由于门禁系统的使用环境不同,要求也差异颇大,不能完成统一全方位应用设计。现以公司员工上班门禁控制系统为例做分析设计。

2 硬件设计

智能门禁系统的硬件设计主要由非接触式射频识别卡、读卡器(阅读器)、发卡器、交换机、信息传输控制器、门禁终端控制器、强力电控锁或电磁锁、电源和门禁系统附属工作设备等几部分组成。

2.1 非接触式射频识别卡

门禁系统的射频识别卡设计频率段为13.56 MHz,选用Mifare IC S50系列电子标签。其遵循ISO 144443,内部结构由只读存储器件、天线、信息控制模块和射频接口组成。

2.2 阅读器选择及流程设计

阅读器是门禁系统设计中的核心器件,由微型控制器、射频电路、电源模块、时钟模块、看门狗、接口及天线电路组成。微控制器是阅读器器件的处理核心部分,它控制着其他各个组件的运行。射频电流的性能直接影响系统的稳定和高效。在所有以上部件设计之外,本系统阅读器还添加了用于指示的LED灯和蜂鸣器模块。图1所示是系统读卡器的结构图。

系统射频电路芯片采用 NXP 公司提供的 MFRC 500。它可以实现64 字节 FIFO 缓冲的微控制器接口,完成信号调制/解调和天线驱动、存储数据安全校对、存储权限管理等。

2.3 控制器接口

信号接口遵循韦根协议,其由3 根线DATA0、 DATA1 和 DataReturn组成。DATA0~1 空闲时加+5V 高电平。输出低电平由DATA0拉低来实现,输出高电平则DATA1拉低,中断实现阅读器与MCU间的通信。阅读器的天线是查询信号的发射点,因此功率设计要偏大,保证天线线圈有较大的电流通过。

2.4 信息传输控制器

系统信息传输控制器采用 RS485 与 TCP/IP 混合通信方式,实现终端控制器与上位机管理软件的沟通,完成信息的存储与转发。终端控制器的功能是与读卡器通信,与网络控制器通信,数据智能存储,提供时钟信号,终端锁具的开关控制。

系统设计选用PK-C398控制器,其内部核心是用 32 位嵌入式 ARM微处理器,使用RISC的 ARM架构,操作指令上为Thumb与ARM指令混编。接入E2PROM存放嵌入式操作系统和程序初始运行代码,编程使用JTAG 接口进行系统调试。

3 软件设计

本系统的软件设计是建立在智能门禁系统的硬件平台之上的,利用RFID唯一识别的特点,对每一个进出门禁的射频卡记录存储。软件设计对应用功能进行了展开,可实现用户详细信息与射频卡本身的关联与实时修改、权限设置、考勤管理、安防监督等。

3.1 功能分配与模块设计

根据软件设计的功能,可以把软件系统统筹为三个模块:功能设置、门禁卡管理和数据管理。

通过功能设置可为门禁系统软件终端做参数配置,使它能与数据库、终端器件正确连接,并配置射频卡用户不同的操作权限。

门禁卡管理主要是处理射频卡的相关数据操作,如卡号与个人信息的关联。设置使用卡记录表,对每个用户的使用情况作详细日志管理。用户卡本身信息设置可提供快速的信息浏览查询,并实现射频卡的挂失、补办、密码设置、密码修改等操作。

数据管理主要是通过刷卡操作,系统可自动记录刷卡的日期、时间、卡号、是否开门等数据,并对数据进行分析。不同的用户卡分析结果不同,如员工卡分析结果为正常上班、迟到、早退等。软件设计还可以设置数据筛选规则,如迟到时间点、最早下班时间等。

3.2 通信接口设计

数据由终端采集得到后,需要发送到控制器。系统对大部门与部门之间采用TCP/IP网络传输,运用套接字Socket实现。终端程序将数据交付Socket,套接字转交对应驱动发送到网络,对应点选定的IP地址和端口号。该选定IP地址的控制器,从本机对应的端口获取数据包,解包转存数据库。套接字的使用类型有三种:流式套接字、数据报式套接字和原始套接字。此处选用原始套接字:它是基于TCP 的 Socket 编程,运用网络三次握手实现数据的可靠传输。服务器与客户端的通信流程如图3所示。

3.3 程序算法设计

门禁系统软件的设计分为硬件驱动程序编写和上位机软件设计,硬件驱动中阅读器的数据获取是核心。计算机中安装的上位机完成数据的存储与分析,上位机的界面及功能也是系统设计的重要部分。

阅读器收到卡号数据后传送到控制器,控制器对比得到的卡号与数据库中的存根,判断如果合法则发送开门的指令。在阅读器读取卡号的过程中,系统设计增加一层安全验证。借助IC卡存储器访问验证的特性,把具有唯一性的用户编码号存入IC卡的存储器中。阅读器访问时,系统要进行三个过程的验证:首先,访问IC卡存储器扇区内的原始密码验证,确定该卡是本部门发行的,过滤了其他同频率卡的干扰。第二,验证本卡卡号的合法性,即IC号与存根数据对比。第三,IC卡内存储的用户编号与存根数据验证。只有三个验证机制都通过,数据才能被存储记录下。阅读器程序设计主要是微控制器对RC500的控制操作,具体设计如下:

首先,阅读器要进行初始化操作,检测RC500的运行状态,如果空闲,则将IC卡存储扇区的密匙读入 RC500 内的存储器,进行密码认证。IC卡片密码数据48 b,高32位与低位分别操作,48 b的数据先被拆分为96 b,然后在高位部分更新将要写入的 E2PROM的地址(大端存储格式),复写入 E2PROM。

3.4 上位机软件设计

上位机是系统数据的管理应用程序。程序启动时,首先进行实例判断,如果计算机中存在正在运行的同类实例,则终止程序启动操作。实例判断通过,连接数据进行用户名和密码的验证,然后进入主界面。由于管理软件的权限分类,根据用户名的判断分为超级管理员和普通管理员,两者对应不同的权限操作模块。

4 结 语

本设计是基于射频识别的智能门禁系统,从框架搭建、硬件设计、软件开发做了详细阐述。针对系统的传输速度与成本,提出使用RS485与TCP/IP通信协调工作的网络连接。对控制器工作原理和进程做了分析,完成了硬件设计标签、阅读器等器件选型和电路设计,以及软件功能划分、阅读器数据控制流设置和上位机设计。

TCP/IP协议通讯有数据传输快、无间距限制、接入控制器数量多等优点,但受硬件成本的制约,其普及率还不高。随着技术的深入,网络普及提升成本减少,完全TCP/IP模式的通讯必然会成为主流模式。接踵而来的是通讯的安全问题,可以预测无论是网络数据传输还是硬件存储,都将会迎来技术性的挑战,让系统更安全,让数据更保密是下一步设计的关键。

参 考 文 献

[1] 江鹏.基于物联网技术的中小型机器人企业展厅设计[D].武汉:武汉理工大学,2012.

[2] 蔡成炜,范海健,刘必洋.指纹识别技术门禁系统的设计与应用[J]. 电视技术,2012(3):128-130.

[3] 安静宇,雷金莉,王媛媛.基于非接触式IC卡门禁系统的设计[J]. 宝鸡文理学院学报:自然科学版,2008(2):141-144.

[4] 张大为,王珺,刘迪.基于单片机的射频卡读卡器设计[J].现代电子技术,2011,34(20):57-59.

[5] 袁广南.基于RFID技术和指纹识别技术的车辆管理系统[J].电脑知识与技术,2011(9):180-181.

第4篇:协同通信范文

卫星移动通信自逐渐发展以来,便因其覆盖范围广、地域限制弱、信号容量大等特点被广泛应用于通信网络当中,成为全球通信网络中不可或缺的有效信息传输手段之一,在军用领域和民用领域发挥着重要作用。但由于卫星移动通信的信道受多径效应、阴影效应以及多普勒效应的影响,严重的影响信号传输的有效性,因此必须采用相关的通信技术克服这一问题。协作通信技术作为提高通信质量的有效手段,因此研究其在卫星移动通信中的应用逐渐成为热门话题。

关键词:

协作通信技术;卫星移动通信;应用

1协作通信技术

1.1协作通信技术概述。协作通信技术是利用不同节点的相互协作引入空间分集优势,以此对抗信道中存在的多径效应、阴影效应、多普勒效应等影响通信质量的不良因素。协作通信技术各节点在发送自己信息的同时业彼此共享自身存在的资源以协助其他节点传输信息,最终凭借这种相互协作的机制形成一种多入、多出的虚拟通信系统,也凭借这种相互协作的节点工作模式而形成的良性系统提高系统信息传输的高效性及稳定性。

1.2协作通信技术应用于卫星移动通信中的优势。协作通信技术存在两大优势,其一是调动并利用网络中空余资源的存在,其二是对系统信息传输产生协作通信增益。其中协作通信增益作用对于提升卫星移动通信信号传输的稳定性和有效性有着至关重要的作用。协作通信增益作用主要通过空间分集增益、时分分集增益、频分分集增益三种具体技术实现方式达成抑制信道受不良效应的影响,被誉为下一代通信系统的关键技术之一,因此研究协作通信技术在卫星移动通信中的应用是通信技术发展的重点,也是未来通信技术未来能否实现跨越的关键所在。

2卫星移动通信

2.1卫星移动通信概述。卫星移动通信是以地球同步轨道卫星或其余轨道卫星为基础,采用卫星通信特有的多址信息传输方式为全球范围内的卫星移动用户提供服务。卫星移动通信主要由通信卫星、地面站、通信终端三部分组成,由通信卫星传递信号保持地面通信系统与用户移动终端的通信连结,再通过地面站接收终端发出的信号以及卫星通信反馈回来的信号以此实现不同地域之间卫星移动用户之间的联系。目前,卫星移动通信已广泛应用于军事和民用领域,是21世纪取得的重大科技成果之一。

2.2卫星移动通信应用协作通信技术的必要性。卫星移动通信按照应用环境可分为陆地卫星移动通信系统(LMSS)、航空卫星移动通信系统(AMSS)和海事卫星移动通信系统(MMSS);按照卫星轨道分类又可分为同步轨道卫星系统和非同步轨道卫星系统。由于所需卫星移动通信的功能和作用各不相同,因而通信卫星与通信卫星之间存在信号的干扰,加之卫星信道本身的不良效应影响,卫星移动通信之间若没有协作通信技术的连接,不仅浪费了不同通信卫星的信息资源,其传输信号的稳定性和有效性也无法得到充分的保障。因此,加强协作通信技术在卫星移动通信中的应用,是未来移动通信发展的必然趋势和要求。

3协作通信技术在卫星移动通信中的应用

3.1卫星多节点协作传输技术。卫星多节点协作传输系统可以看做是各个节点之间一对多和多对一系统的集合,在这个节点组成的集合之间,各个节点都将参与协作传输。具体协作模式如下:以通信卫星作为源节点S,以地面站或某个信关站为目的节点D,以众多协作节点视为R(R可以为一个或多个)。其中,众多协作节点R由于地域的分散性和独立性,若是直接由通信卫星S接收有可能会导致信号接收的差错性,而经过不同的节点R将信息转发到目的节点D再将这些信息进行合并则可以有效提高目的节点D的接收性能并极大程度的改善通信卫星R的差错性,使其有更多的链路余量来抵抗信道衰弱对信号传输的影响,最终提升卫星移动通信信号的质量和有效性。但是,需要注意的是,由于正交传输的作用,协作节点R的数量会影响协作传输系统的频谱效率,因此在运用此技术的过程中需要注意节点个数的选择。

3.2卫星协作节点选择技术。协作节点R的数量会影响协作传输系统的频谱效率的问题,卫星协作节点选择技术可以根据协作节点的信道强弱来进行区分和筛选,选择最合适的协作节点R来进行协作传输,即将目的节点D与协作节点R之间一对多的集合调整为一对一或一对有限的节点R的集合,借此合理利用系统资源,有效改善卫星多节点协作传输系统的频谱效率性能。同时,通过卫星协作节点选择技术可以根据因地形、建筑物遮挡、传输距离等因素导致的协作节点信道衰落成都的不同而优化不同节点之间的功率分配,减少不同协作节点之间的能耗,延长协作节点的使用寿命,从而降低卫星移动通信的损耗成本,将更多的资金投入到应用在卫星移动通信中的协作移动通信技术的优化和研发之中,促进卫星移动通信技术的发展。

3.3卫星混合协作传输技术。在卫星协作传输系统中,协作节点可以采用AF和DF两种不同的工作模式,这两种工作模式各有其利弊。AF工作模式不需要协作节点进行信息的解调、译码等处理,可以有效降低鞋店工作的复杂程度,简单易行,但也会由于在引入信号的同时放大引入时的噪声,因此存在噪声放大效应这一不良影响;DF工作模式会将协作节点进行解调、译码等处理,确保系统获得良好的性能,但也由于程序的复杂性,存在错误传播的可能,影响系统的分集效果。因此,将这两种工作模式进行协调处理可以实现卫星通信技术的最优化。卫星混合协作传输技术便是将两种工作模式进行混合,根据译码情况采用AF或DF方式转发源节点信息并合并检测,使系统获得最好的差错性能,借以提升系统的传输能力。此外,或和写作传输技术还可以结合以上提到的两种技术来进一步改善卫星混合协作传输系统的性能。

4结束语

总而言之,加强协作通信技术在卫星移动通信中的应用研究,可以不断丰富卫星移动通信领域的技术成果,为卫星移动通信的发展以及提高卫星通信系统信息的传输性能提供良好的发展思路和技术支撑,助力卫星移动通信的进一步发展。本文仅是将协作通信技术在卫星移动通信中的应用思路及方式方法做出了简单阐述,提出了属于自己的一些浅显思考和建议,希望能对后续的研究者起到一定的启发作用,为进一步研究提升协作通信技术在卫星移动通信中的应用提供解决思路。

参考文献

[1]李国彦,张有光.飞行器进近中的自适应协同传输与节点选择[J].航空学报,2011,32(11):2083-2095.

[2]刘振华,侯嘉.多中继协作通信系统的中断概率分析[J].通信技术,2012,45(01):72-74.

[3]张乃通,张中兆,李英涛.卫星移动通信系统[J].电子工业出版社,2010.

[4]方秀花等.卫星移动通信的军事应用[M].中国航天,2005(1).

[5]杜伟华,刘紫燕.两跳中继协作通信技术的研究与仿真[J].通信技术,2013,46(2):70-72.

第5篇:协同通信范文

办税大厅里人满为患的现象相信大家都并不陌生,对于老百姓来说,排长队是太正常的事情了,更麻烦的是,并不是一次就能受理完成,跑上几次更是已经习以为常。然而现在,在南京国税这样的局面已是一去不复返。通过门户整合了内部的协同应用后,南京国税网上申报和电话申报率达到了98%以上!网上申报系统的全面应用正是得益于协同应用对财务数据的采集、行政许可等很多应用系统的很好整合。

协同植入

企业IT系统

三四年前,国内用户开始认知和接受协同的概念。不过在当时,他们更接受的是以OA办公为核心的协同理念和应用,甚至有人认为OA办公就是协同,而且几乎所有的OA厂商都变成了协同厂商。“事实上,这与我们当初所提出的以通信为核心的协同理念产生了一些偏差。”点击科技总裁王志东表示。

当然,我们不能否认,在当时的应用环境,OA在推动协同应用发展的过程中所起到的重要作用。“国内特殊的应用环境,使得在相当长的一段时间内,OA成了协同的代名词。”金和软件总裁栾润峰说:“而在今天,协同所解决的问题绝不仅仅是实现自动化办公那么简单,企业内部的沟通、企业的组织运营和管理、有效的工作流和流程,协同的理念已经贯穿到了企业的整个IT系统甚至是管理思想。

大家可以回想一下,在三四年前,企业用户是不会要求OA系统可以发短信的,更不会要求其可以与即时通信、视频会议等相结合; 而现在,这些都是OA系统的基本功能。“今天,用户对协同的需求是显性的,用户有对多种通信工具进行整合的需求,也存在着更为迫切的通信工具与业务系统的相融合的需求。”计世资讯副总经理曹开彬表示。

协同越来越像是一个基因,已经渗透到了企业整个IT系统中的各个层面。比如,协同的概念已经固化到了手机里,手机可以收发邮件、可以发即时通信,甚至可以与企业的ERP系统实现整合,并通过手机确认订单、进行库存的查询等。“协同已经无所不在,企业需要的是搭建一个协同的环境,无论是统一通信、电子邮件、即时通信,又或者是与ERP等业务系统的整合,这些都只是企业协作的一部分。”IBM软件集团中国区Lotus技术支持经理陈巧明表示。

可以说,协同已经走过了厂商炒作概念的阶段,用户对协同的需求是实时的,更是实实在在的。也正因如此,协同已经回归到了其专注于通信、协作,并通过IP电话、视频会议、电子邮件、即时通信等通信手段贯穿企业的整个应用系统的真谛。

早些年,业界有观点认为,协同软件本身会形成一个细分市场,随着市场的成熟,甚至会出现几家协同软件巨头。而今天,我们发现,协同已经更多地融入到了各种应用软件中,协同软件独立化、细分化的趋势已经不像以前那么明确了。像即时通信、视频会议、电子邮件等工具型协同软件朝着集多种功能于一体的协同工具发展; 协同平台从一种平台化产品演变成了协同的平台化发展趋势; 协同应用软件的概念逐步消失,因为现在无论是ERP、OA、CRM、HR等应用软件都蕴含了协同的基因。

按需选择整合方式

以前用户要分别登陆到企业的ERP系统、财务系统、CRM系统等,以进行业务处理; 而通过门户进行整合以后,用户只要登录到Web门户,就可以通过这个入口进入所有相关的系统。可以说,门户实现了多系统的单点登录,这是一种相对简单的协同整合方式。

对于最终用户来说,目前有两种比较主流的协同整合展现方式: 一种是整合到即时通信的客户端; 另一种就是整合到门户。与门户整合实现了多系统的单点登录不同,即时通信整合则是一种集中的消息展现。“现在,即时通信早已不再只是一种聊天工具,其成为了整合协同应用的客户端,除了可以完成其即时通信的基本功能外,还可以进行流程的处理,甚至可以与业务系统整合起来。”曹开彬表示。

那么,终端用户该选择哪种整合方式呢?曹开彬认为,根据用户不同的需求对最终用户进行分级,并让他们选择适合自己的访问方式是目前最有效的方法。“其实这两种整合方式并不矛盾,门户是桌面整合的一种模式,即时通信也可以被整合进去。最重要的是根据用户的不同需求进行选择。”曹开彬说。

比如,即时通信的整合就更适合完成流程的审批。作为企业的中层管理者,如果下属员工给他发了一个流程需要审批,管理者通过即时通信就能直接收到这个消息,并进行处理和审批。王志东认为,比较适合通过即时通信进行协同整合的用户通常具有这两种特点: 一是组织机构比较分散,有多处分公司和办事处; 还有一种就是信息化系统非常完善,业务系统的信息化已经非常成熟了,那么企业就可以通过即时通信集成单点登录,然后分发下去。

陈巧明也强调,应该根据用户的不同需求选择访问方式。“不同的用户会适合不同的客户端访问方式,比如经常做浏览性工作的用户,就更适合使用浏览器的方式进行访问; 如果用户需要做很多操作、编辑、修改等工作的话,可能就更适合选择富客户端; 还有一些用户由于工作性质经常在外面跑,像保险、电力等行业,他们可能就更适合通过移动设备使用即时通信的客户端进行访问。”

此外,现在还有一种不需要安装客户端的访问方式,就是使用浏览器,用户不需要安装任何软件,直接登录到网站就可以了,这有点类似于现在很流行的SaaS模式。“从现在来看,客户端的展现方式仍然是主流,使用浏览器方式的用户还非常少。”曹开彬介绍说,“但我个人觉得浏览器的方式在未来可能会越来越流行,应用部署的方便会给其带来很好的发展前景。”不过,也有观点认为,虽然浏览器应用部署确实很方便,但其弊病也很致命,比如还无法支持复杂功能,以及在安全性上还有欠缺。

采访手记

协同软件“润物细无声”

2001年12月,离开了新浪的王志东,在北京创建了点击科技,同时向业界抛出了一个重磅炸弹――提出协同应用的理念以及协同软件的概念。在当时,业内几乎没有人能够理解协同的概念,就更不要说认同了。

第6篇:协同通信范文

论文摘要:现场总线是近年来自动化领域中 发展 很快的互连通信 网络 ,具有协议简单开放、容错能力强、实时性高、安全性好、成本低、适于频繁交换等特点。目前,国际上各种各样的现场总线有几百种之多,统一的国际标准尚未建立。较著名的有基金会现场总线(ff)、hart现场总线、can现场总线、lonworks现场总线、profibus现场总线、modbus、pheonix公司的interbus、as-interface总线等。 

 

 

智能化配电系统就是通信网络把众多的带有通信接口的中、低压开关和控制设备与主 计算 机连接起来,由计算机进行智能化管理,实现集中数据处理、集中监控、集中分析和集中调度的新型配电系统。智能化配电系统一般由主计算机、通信网络、智能化开关和控制设备三部分组成。 

从目前国内外智能化配电系统所应用的现场总线来看,主要有profibus-dp、modbus、lonworks等,而ff、hart、can等现场总线在智能化配电系统中应用则较少。以上系统基本上都是采用单一的现场总线技术,即整个智能化配电系统中只采用一种现场总线,整个系统构造比较单一。 

随着自动化技术和通信技术的发展,带有通信接口的产品应用量越来越大,而且随着用户对配电系统可靠性和灵活性的更高要求,加上各现场总线本身的特点以及相关的产品品种繁多,因此在一些工程的智能化配电系统中,采用一种现场总线总线的智能化产品往往不能满足应用的全面要求,多现场总线产品共存于一个智能化配电系统已成为一个现实的问题。 

由于多现场总线系统中不同类型的产品均配专用的通信协议,有的厂家还专门为自己的产品开发了专用的通信卡、通信控制器等专用设备,因此,整个系统中的产品由于通信协议不同无法直接和主控单元进行通信,这严重防碍了用户的选择。对用户而言,如果在一个智能化配电系统中每一种智能化产品均选择其专用的通信卡或通信控制器,一个智能化系统将变得支离破碎,组态性和灵活性均较差,而且在系统进行改造或升级时,将要花费用户更多的时间和费用。因此,多现场总线技术在一个智能化配电系统中的应用已成为一个重要的研究课题。 

 

1 多现场总线技术 

 

目前,在一些工程中通常的做法是在某种现场总线的基础上开发能连接其他公司现场总线的接口产品。由于现场总线国际标准尚未建立,多种类型的现场总线枚不胜数,需要开发大量的接口产品才能满足不同工程需要。如果仅以ff、can、lonworks、profibus-dp、modbus五种著名现场总线为例,要使它们中任意两种不同现场总线能统一于一个智能化配电系统中,仅是协议转换器这种接口产品就要有二十种之多,如果一个系统中有三种或三种以上不同现场总线产品,那麻烦则更大。不少 企业 ,包括一些国际上的大公司为了解决来自不同厂家的产品兼容性问题,都投入了巨大的精力和财力,但成效甚微。 

针对上述在智能化配电系统开发中遇到的实际问题,我们提出了通用型现场总线协议控制器这种全面的解决方案,通过硬件和软件的方法共同对现场总线协议进行处理,解决智能化配电系统中多现场总线的兼容性问题,其目的是为了能将不同现场总线的产品和谐地融入一个系统中,充分发挥不同产品的长处,为那些希望使用不同厂家优质产品的用户提供更大的灵活性。 

通用型现场总线协议控制器是现场级的通用通信管理设备,由它把各个现场设备连成网络,并负责现场设备上位机之间的信息传递。由于其是通用性的,只需通过相应的cpu及接口电路和软件就可以完成多种现场总线协议的转换,实现与不同厂家的现场设备进行通信。 

2 现场总线协议控制器 

 

通过多种方案的比较,采用模块化结构和多cpu工作方式来设计通用型现场总线协议控制器。因为模块化的结构可以使系统有较强的扩展能力,为系统将来的升级换代带来便利。 

通用型现场总线协议控制器主要由底板和插卡组成,其中底板带有电源以及扩展槽和固定支架等,并且系统总线也是在底板,扩展槽和底板上的信号线构成。插卡分三种,分别为主控板、协议板、接口板,其中主控板和协议板带cpu。主控板负责管理整个系统以及与上位机的通信,通用型现场总线协议控制器通过rs232接口与上位机连接,主控板通过它与上位机进行信息交换,主要包括:管理系统总线,给协议板和接口板分配系统资源,与协议板进行信息交换,对来自协议板的数据进行处理,等待上位机提取。协议板是通用型现场总线协议控制器的关键部分,所有与现场设备的通信都由它完成。协议板可以提供多种现场总线协议,一般一块协议板只能进行一种现场总线协议的通信。接口板从属于某一协议板,为协议板提供通信接口。用户可以根据实际情况进行选择,接口种类有rs232、rs422、rs485等。通用型现场总线协议控制器与上位机以及与现场设备的通信都采用串行方式,而通信控制器内部各插卡之间通过系统总线来完成。其中主控板与各协议板的通信采用主从式。主控板通过系统总线分别与协议板进行通信,各协议板之间不能进行通信。 

通信过程如下:主控板在系统总线上,通过广播方式发送协议板号来呼叫与之通信的协议板,每块协议板上有协议板号识别电路,只有与发送的协议板号相符的协议板才响应主控板,从而实现主控板与协议板的通信。当用户增加新的协议设备时,不必改动硬件,只需在增加的新的协议板上设置好协议板号,并在上位机的组态中添加相应的系统信息存入 计算 机即可。协议板和接口之间的信息传递通过系统中的局部总线来完成。 

 

3 应用实例 

 

通用型现场总线协议控制器已经在我们最新开发的ce2000电站综合自动化系统中完成,并与多种产品进行了通信联网试验。系统中的主要产品有:美国西屋公司采用incom(modbus)通信协议的智能化产品、德国西门子公司和德国默勒公司采用profibus-dp通信协议的智能化产品、南京因泰来公司采用其内部通信协议intbus的综合数字保护继电器产品。 

整个系统由配各种智能化开关柜的硬件系统和软件系统两部分组成。硬件包括各种智能化开关柜、通用型现场总线协议控制器、上位控制计算机。软件由主控程序、通讯界面和人机界面三部分组成。根据以上硬件设备的配置情况,在上位机上输入系统配置信息,通过串行口传递给控制器主板。主控板将系统配置信息分类传递给各协议板,各协议板收到系统信息后与所属硬件设备进行通信,将采集到的数据经主控板传送到上位机,并通过主控板接受上位机命令。 

 

4 结束语 

 

第7篇:协同通信范文

论文摘要:现场总线是近年来自动化领域中发展很快的互连通信网络,具有协议简单开放、容错能力强、实时性高、安全性好、成本低、适于频繁交换等特点。目前,国际上各种各样的现场总线有几百种之多,统一的国际标准尚未建立。较著名的有基金会现场总线(FF)、HART现场总线、CAN现场总线、LONWORKS现场总线、PROFIBUS现场总线、MODBUS、PHEONIX公司的INTERBUS、AS-INTERFACE总线等。

智能化配电系统就是通信网络把众多的带有通信接口的中、低压开关和控制设备与主计算机连接起来,由计算机进行智能化管理,实现集中数据处理、集中监控、集中分析和集中调度的新型配电系统。智能化配电系统一般由主计算机、通信网络、智能化开关和控制设备三部分组成。

从目前国内外智能化配电系统所应用的现场总线来看,主要有PROFIBUS-DP、MODBUS、LONWORKS等,而FF、HART、CAN等现场总线在智能化配电系统中应用则较少。以上系统基本上都是采用单一的现场总线技术,即整个智能化配电系统中只采用一种现场总线,整个系统构造比较单一。

随着自动化技术和通信技术的发展,带有通信接口的产品应用量越来越大,而且随着用户对配电系统可靠性和灵活性的更高要求,加上各现场总线本身的特点以及相关的产品品种繁多,因此在一些工程的智能化配电系统中,采用一种现场总线总线的智能化产品往往不能满足应用的全面要求,多现场总线产品共存于一个智能化配电系统已成为一个现实的问题。

由于多现场总线系统中不同类型的产品均配专用的通信协议,有的厂家还专门为自己的产品开发了专用的通信卡、通信控制器等专用设备,因此,整个系统中的产品由于通信协议不同无法直接和主控单元进行通信,这严重防碍了用户的选择。对用户而言,如果在一个智能化配电系统中每一种智能化产品均选择其专用的通信卡或通信控制器,一个智能化系统将变得支离破碎,组态性和灵活性均较差,而且在系统进行改造或升级时,将要花费用户更多的时间和费用。因此,多现场总线技术在一个智能化配电系统中的应用已成为一个重要的研究课题。

1 多现场总线技术

目前,在一些工程中通常的做法是在某种现场总线的基础上开发能连接其他公司现场总线的接口产品。由于现场总线国际标准尚未建立,多种类型的现场总线枚不胜数,需要开发大量的接口产品才能满足不同工程需要。如果仅以FF、CAN、LONWORKS、PROFIBUS-DP、MODBUS五种著名现场总线为例,要使它们中任意两种不同现场总线能统一于一个智能化配电系统中,仅是协议转换器这种接口产品就要有二十种之多,如果一个系统中有三种或三种以上不同现场总线产品,那麻烦则更大。不少企业,包括一些国际上的大公司为了解决来自不同厂家的产品兼容性问题,都投入了巨大的精力和财力,但成效甚微。

针对上述在智能化配电系统开发中遇到的实际问题,我们提出了通用型现场总线协议控制器这种全面的解决方案,通过硬件和软件的方法共同对现场总线协议进行处理,解决智能化配电系统中多现场总线的兼容性问题,其目的是为了能将不同现场总线的产品和谐地融入一个系统中,充分发挥不同产品的长处,为那些希望使用不同厂家优质产品的用户提供更大的灵活性。

通用型现场总线协议控制器是现场级的通用通信管理设备,由它把各个现场设备连成网络,并负责现场设备上位机之间的信息传递。由于其是通用性的,只需通过相应的CPU及接口电路和软件就可以完成多种现场总线协议的转换,实现与不同厂家的现场设备进行通信。

2 现场总线协议控制器

通过多种方案的比较,采用模块化结构和多CPU工作方式来设计通用型现场总线协议控制器。因为模块化的结构可以使系统有较强的扩展能力,为系统将来的升级换代带来便利。

通用型现场总线协议控制器主要由底板和插卡组成,其中底板带有电源以及扩展槽和固定支架等,并且系统总线也是在底板,扩展槽和底板上的信号线构成。插卡分三种,分别为主控板、协议板、接口板,其中主控板和协议板带CPU。主控板负责管理整个系统以及与上位机的通信,通用型现场总线协议控制器通过RS232接口与上位机连接,主控板通过它与上位机进行信息交换,主要包括:管理系统总线,给协议板和接口板分配系统资源,与协议板进行信息交换,对来自协议板的数据进行处理,等待上位机提取。协议板是通用型现场总线协议控制器的关键部分,所有与现场设备的通信都由它完成。协议板可以提供多种现场总线协议,一般一块协议板只能进行一种现场总线协议的通信。接口板从属于某一协议板,为协议板提供通信接口。用户可以根据实际情况进行选择,接口种类有RS232、RS422、RS485等。通用型现场总线协议控制器与上位机以及与现场设备的通信都采用串行方式,而通信控制器内部各插卡之间通过系统总线来完成。其中主控板与各协议板的通信采用主从式。主控板通过系统总线分别与协议板进行通信,各协议板之间不能进行通信。

通信过程如下:主控板在系统总线上,通过广播方式发送协议板号来呼叫与之通信的协议板,每块协议板上有协议板号识别电路,只有与发送的协议板号相符的协议板才响应主控板,从而实现主控板与协议板的通信。当用户增加新的协议设备时,不必改动硬件,只需在增加的新的协议板上设置好协议板号,并在上位机的组态中添加相应的系统信息存入计算机即可。协议板和接口之间的信息传递通过系统中的局部总线来完成。

3 应用实例

通用型现场总线协议控制器已经在我们最新开发的CE2000电站综合自动化系统中完成,并与多种产品进行了通信联网试验。系统中的主要产品有:美国西屋公司采用INCOM(MODBUS)通信协议的智能化产品、德国西门子公司和德国默勒公司采用PROFIBUS-DP通信协议的智能化产品、南京因泰来公司采用其内部通信协议INTBUS的综合数字保护继电器产品。

整个系统由配各种智能化开关柜的硬件系统和软件系统两部分组成。硬件包括各种智能化开关柜、通用型现场总线协议控制器、上位控制计算机。软件由主控程序、通讯界面和人机界面三部分组成。根据以上硬件设备的配置情况,在上位机上输入系统配置信息,通过串行口传递给控制器主板。主控板将系统配置信息分类传递给各协议板,各协议板收到系统信息后与所属硬件设备进行通信,将采集到的数据经主控板传送到上位机,并通过主控板接受上位机命令。

4 结束语

第8篇:协同通信范文

2012年12月北斗二代卫星导航系统正式开通,其服务区域覆盖了我国全境、西太平洋及南海广大海域。北斗系统所独有的短报文通信功能可以实现用户与用户、用户与地面控制中心之间的双向报文通信,作用距离能够跨越北斗系统的整个服务区域。同时,北斗短报文通信作为一种可靠的远程数据传输手段,目前在通信领域已经得到了广泛的应用[5?8]。

为此,本文提出利用北斗短报文远程通信手段增加基线长度,提高协同定位精度的舰载被动传感器测向交叉定位方案。本文在简单介绍测向交叉定位工作原理的基础上,依据北斗短报文通信的技术指标对方案进行可行性分析;然后从系统设计、工作流程、通信协议和差错控制四个方面对方案进行详细阐述。

1 测向交叉定位工作原理

测向交叉定位工作原理如图1所示。

由图1可以看出,测向交叉定位主要分为以下三个阶段:

图1 测向交叉定位工作原理

(1) 建立通信

发起方发送建立通信申请报文,其主要内容为发起方通信地址、时间信息和发起方位置信息。协同方接收后结合自己位置解算发起方方位距离,并准备发回响应报文。协同方发送建立通信响应报文,其内容包括时间信息和协同方位置信息,发起方接收后结合自己位置解算协同方方位距离,并确认双方通信建立完毕。

(2) 确定定位目标

发起方发送协同定位申请报文,其中包含了时间信息、发起方位置信息、协同探测目标批号、目标辐射源载频、脉宽、重复频率信息,协同方接收后确认协同定位目标,准备开始协同定位。

(3) 解算目标位置

现有文献介绍比较多的测向交叉定位方法是先计算出定位误差的非线性最小二乘估计初始值,再利用迭代法得到目标位置的最优估计[9?10]。因此,协同方需发送协同定位报文,将时间信息、协同探测目标批号、目标方位、协同方位置信息提供给发起方。发起方接收后解算出定位误差最小二乘估计的初始值,并返回一个包含已完成迭代运算次数的响应报文,初始值设为0。协同方根据响应报文继续向发起方发送目标方位信息直到迭代运算次数满足要求后停止发送协同定位报文,协同定位结束。

2 北斗短报文应用于测向交叉定位的可行性

分析

将北斗短报文通信作为协同定位信息传输手段,应用于测向交叉定位的可行性分析如下:

(1) 数据量

北斗短报文通信采用ASCII编码,每次的内容长度不超过200 B。根据前面对各种协同报文内容的分析,北斗信道的通信数据量完全可以满足测向交叉定位协同信息交换的要求。

(2) 数据率

本文提出的基于北斗信道的测向交叉定位是以海上目标作为探测对象,运动速度较慢。北斗短报文通信的服务频度根据用户等级区分为1 s,10 s,30 s,60 s,通信服务响应时间在1 s左右[5]。选用较高等级的用户卡完全能够满足被动传感器对目标快速连续跟踪定位的要求。

(3) 通信距离

在北斗卫星导航系统的覆盖范围内都可以进行北斗短报文通信。目前已建成的北斗二代卫星导航系统的服务区域涵盖了我国及周边地区,且北斗短报文通信不存在盲区,因此其作用距离几乎不受限制。

(4) 可靠性与安全性

北斗短报文通信采用扩频通信传输方式,具有较强的抗干扰、抗噪音、抗多路径衰减能力。由于其频谱密度较低,因此还具有隐蔽性和低的截获概率。北斗终端根据SIM卡生成的惟一扩频码将短报文通信上行数据发送到卫星,北斗地面控制中心则将短报文通信下行数据送到用户终端后通过SIM卡进行解密,从而实现了保密通信[6]。

3 基于北斗短报文的测向交叉定位方案

3.1 系统设计

基于北斗短报文的测向交叉定位方案主要是采用北斗短报文通信替换原有的协同定位信息传输手段。在每个协同定位单元在增设一个北斗用户机的基础上,再加载一台PC机作为协同信息处理设备。北斗用户机负责提供舰艇位置信息和建立北斗短报文通信;被动传感器负责目标辐射源探测和识别;PC机负责对北斗用户机进行通信控制,获取协同定位舰艇相对态势和解算协同定位目标位置。总体设计方案原理如图2所示。

3.2 工作流程

北斗用户机、PC机和被动传感器开机后,PC机自动接收被动传感器探测到的目标辐射特征信息和识别信息,同时控制北斗用户机依次向各协同舰艇发送含有本舰位置信息的短报文,并自动接收其他舰艇发送的位置信息,形成态势图。操作员在PC机的目标辐射源列表中选定目标后,再选择与本舰和目标构成较佳的相对位置关系(等腰三角形)的舰艇进行协同定位。PC机控制北斗用户机与协同舰艇建立通信后,按照图1所示的测向交叉定位工作流程生成协同报文与协同定位舰艇进行信息交换,最终完成目标位置的解算。得到的目标位置可以通过Socket通信传回被动传感器,由被动传感器发送到作战信息网络,为指挥决策和武器使用提供目标指示。

图2 基于北斗短报文的测向交叉定位方案原理图

3.3 通信协议

本文用串口通信将北斗用户机与PC机连接起来, 其通信协议的各种功能是通过指令方式实现的。北斗用户机的指令可以分为定位类、通信类、查询类、授时类和状态类等。通过这些指令,PC机可以自动接收北斗用户机上报的本舰舰位、时间校准信息,及其从协同舰收到的协同报文;也可以实现控制北斗用户机与指定协同舰建立通信,改变北斗用户机工作参数等功能。

PC机向北斗用户机发送的指令信息格式如图3所示。

图3 PC机向北斗用户机发送的指令信息格式

指令信息各个区段意义见表1。

命令码用来标示指令信息类型,具体类型见表2。

3.4 差错控制

北斗短报文通 信有时会出现信息丢失或出错的现象[9],而北斗用户机本身不具有差错控制的能力,因此只能在PC机的串口通信软件设计中引入相应的差错检测和纠正机制。报文丢失可以通过发送响应报文进行检测;报文内容出错可以通过校验码检测。丢失或出错的报文可以通过相应的报文重发控制机制由发送方进行补发。报文重传控制流程如图4所示。

图4 报文重传控制流程

协同定位方在接收到一个协同报文后应立即向报文发送方发送一个响应报文,如果对方在发送报文后的规定时间内未收到响应报文,应当重发报文。这里通过设定重发次数上限有关。

假设协同双方北斗终端的通信服务时间间隔相同,则报文最大往返时间[Tb]可以按下式得到:

[Tb=Tr+Tf×2]

4 结 语

本文针对目前舰载被动传感器进行测向交叉定位时基线长度较短,定位精度不高的问题,在深入分析测向交叉定位工作原理和北斗短报文通信特点的基础上,提出基于北斗短报文通信的测向交叉定位方案,并对方案的可行性和实现方法进行了分析。

目前,北斗卫星导航系统已正式向我国及周边地区提供区域服务,未来其服务区域将覆盖全球。采用北斗短报文通信作为协同信息传输手段,将使被动探测装备的测向交叉定位摆脱通信作用距离和通信服务区域的限制。另外,普通北斗终端只能实现点对点的报文通信,而北斗指挥机具有短报文通播功能,利用北斗指挥机实现两台以上被动传感器同时进行测向交叉定位将是下一步的研究方向。因此,北斗短报文通信在多被动传感器测向交叉定位领域具有广阔的发展前景和巨大的应用价值。

参考文献

[1] 孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社,1996.

[2] 胡来招.无源定位[M].北京:国防工业出版社,2004.

第9篇:协同通信范文

关键词:计算机网络通信协议

0引言

本文就计算机网络通信协议、选择网络通信协议的原则、TCP/IP通信协议的安装、设置和测试等,作进一步的研究和探讨。

1网络通信协议

目前,局域网中常用的通信协议主要有:NetBEUI协议、IPX/SPX兼容协议和TCP/IP协议。

1.1NetBEUI协议①NetBEUI是一种体积小、效率高、速度快的通信协议。在微软如今的主流产品,在Windows和WindowsNT中,NetBEUI已成为其固有的缺省协议。NetBEUI是专门为几台到百余台PC所组成的单网段部门级小型局域网而设计的。②NetBEUI中包含一个网络接口标准NetBIOS。NetBIOS是IBM用于实现PC间相互通信的标准,是一种在小型局域网上使用的通信规范。该网络由PC组成,最大用户数不超过30个。

1.2IPX/SPX及其兼容协议①IPX/SPX是Novell公司的通信协议集。与NetBEUI的明显区别是,IPX/SPX显得比较庞大,在复杂环境下具有很强的适应性。因为,IPX/SPX在设计一开始就考虑了多网段的问题,具有强大的路由功能,适合于大型网络使用。②IPX/SPX及其兼容协议不需要任何配置,它可通过“网络地址”来识别自己的身份。Novell网络中的网络地址由两部分组成:标明物理网段的“网络ID”和标明特殊设备的“节点ID”。其中网络ID集中在NetWare服务器或路由器中,节点ID即为每个网卡的ID号。所有的网络ID和节点ID都是一个独一无二的“内部IPX地址”。正是由于网络地址的唯一性,才使IPX/SPX具有较强的路由功能。在IPX/SPX协议中,IPX是NetWare最底层的协议,它只负责数据在网络中的移动,并不保证数据是否传输成功,也不提供纠错服务。IPX在负责数据传送时,如果接收节点在同一网段内,就直接按该节点的ID将数据传给它;如果接收节点是远程的,数据将交给NetWare服务器或路由器中的网络ID,继续数据的下一步传输。SPX在整个协议中负责对所传输的数据进行无差错处理,IPX/SPX也叫做“Novell的协议集”。③NWLink通信协议。WindowsNT中提供了两个IPX/SPX的兼容协议:“NWLinkSPX/SPX兼容协议”和“NWLinkNetBIOS”,两者统称为“NWLink通信协议”。NWLink协议是Novell公司IPX/SPX协议在微软网络中的实现,它在继承IPX/SPX协议优点的同时,更适应了微软的操作系统和网络环境。WindowsNT网络和Windows的用户,可以利用NWLink协议获得NetWare服务器的服务。从Novell环境转向微软平台,或两种平台共存时,NWLink通信协议是最好的选择。

1.3TCP/IP协议TCP/IP是目前最常用到的一种通信协议,它是计算机世界里的一个通用协议。在局域网中,TCP/IP最早出现在Unix系统中,现在几乎所有的厂商和操作系统都开始支持它。同时,TCP/IP也是Internet的基础协议。①TCP/IP具有很高的灵活性,支持任意规模的网络,几乎可连接所有的服务器和工作站。但其灵活性也为它的使用带来了许多不便,在使用NetBEUI和IPX/SPX及其兼容协议时都不需要进行配置,而TCP/IP协议在使用时首先要进行复杂的设置。每个节点至少需要一个“IP地址”、一个“子网掩码”、一个“默认网关”和一个“主机名”。在WindowsNT中提供了一个称为动态主机配置协议(DHCP)的工具,它可自动为客户机分配连入网络时所需的信息,减轻了联网工作上的负担,并避免了出错。同IPX/SPX及其兼容协议一样,TCP/IP也是一种可路由的协议。TCP/IP的地址是分级的,这使得它很容易确定并找到网上的用户,同时也提高了网络带宽的利用率。当需要时,运行TCP/IP协议的服务器(如WindowsNT服务器)还可以被配置成TCP/IP路由器。与TCP/IP不同的是,IPX/SPX协议中的IPX使用的是一种广播协议,它经常出现广播包堵塞,所以无法获得最佳的网络带宽。②Windows中的TCP/IP协议。Windows的用户不但可以使用TCP/IP组建对等网,而且可以方便地接入其它的服务器。如果Windows工作站只安装了TCP/IP协议,它是不能直接加入WindowsNT域的。虽然该工作站可通过运行在WindowsNT服务器上的服务器(如ProxyServer)来访问Internet,但却不能通过它登录WindowsNT服务器的域。要让只安装TCP/IP协议的Windows用户加入到WindowsNT域,还必须在Windows上安装NetBEUI协议。

③TCP/IP协议在局域网中的配置。只要掌握了一些有关TCP/IP方面的知识,使用起来也非常方便。④IP地址。TCP/IP协议也是靠自己的IP地址来识别在网上的位置和身份的,IP地址同样由“网络ID”和“节点ID”(或称HOSTID,主机地址)两部分组成。一个完整的IP地址用32位(bit)二进制数组成,每8位(1个字节)为一个段(Segment),共4段(Segment1~Segment4),段与段之间用“,”号隔开。为了便于应用,IP地址在实际使用时并不直接用二进制,而是用大家熟悉的十进制数表示,如192.168.0.1等。在选用IP地址时,总的原则是:网络中每个设备的IP地址必须唯一,在不同的设备上不允许出现相同的IP地址。⑤子网掩码。子网掩码是用于对子网的管理,主要是在多网段环境中对IP地址中的“网络ID”进行扩展。例如某个节点的IP地址为192.168.0.1,它是一个C类网。其中前面三段共24位用来表示“网络ID”;而最后一段共8位可以作为“节点ID”自由分配。⑥网关。网关(Gateway)是用来连接异种网络的设置。它充当了一个翻译的身份,负责对不同的通信协议进行翻译,使运行不同协议的两种网络之间可以实现相互通信。如运行TCP/IP协议的WindowsNT用户要访问运行IPX/SPX协议的Novell网络资源时,则必须由网关作为中介。如果两个运行TCP/IP协议的网络之间进行互联,则可以使用WindowsNT所提供的“默认网关”(DefaultGateway)来完成。⑦主机名。网络中唯一能够代表用户或设备身份的只有IP地址。但一般情况下,众多的IP地址不容易记忆,操作起来也不方便。为了改善这种状况,我们可给予每个用户或设备一个有意义的名称,如“HAOYUN”。

2选择网络通信协议的原则

2.1所选协议要与网络结构和功能相一致。如你的网络存在多个网段或要通过路由器相连时,就不能使用不具备路由和跨网段操作功能的NetBEUI协议,而必须选择IPX/SPX或TCP/IP等协议。另外,如果你的网络规模较小,同时只是为了简单的文件和设备的共享,这时你最关心的就是网络速度,所以在选择协议时应选择占用内存小和带宽利用率高的协议,如NetBEUI。当你的网络规模较大,且网络结构复杂时,应选择可管理性和可扩充性较好的协议,如TCP/IP。

2.2除特殊情况外,一个网络尽量只选择一种通信协议。现实中许多人的做法是一次选择多个协议,或选择系统所提供的所有协议,其实这样做是很不可取的。因为每个协议都要占用计算机的内存,选择的协议越多,占用计算机的内存资源就越多。一方面影响了计算机的运行速度,另一方面不利于网络的管理。事实上一个网络中一般一种通信协议就可以满足需要。

2.3注意协议的版本。每个协议都有它的发展和完善过程,因而出现了不同的版本,每个版本的协议都有它最为合适的网络环境。从整体来看,高版本协议的功能和性能要比低版本好。所以在选择时,在满足网络功能要求的前提下,应尽量选择高版本的通信协议。

2.4协议的一致性。如果要让两台实现互联的计算机间进行对话,它们两者使用的通信协议必须相同。否则中间还需要一个“翻译”进行不同协议的转换,这样不仅影响通信速度,同时也不利于网络的安全和稳定运行。

3TCP/IP通信协议的安装、设置和测试

局域网中的一些通信协议,在安装操作系统时会自动安装NetBEUI通信协议;在安装NetWare时,系统会自动安装IPX/SPX通信协议。在3种协议中,NetBEUI和IPX/SPX在安装后不需要进行设置就可以直接使用,但TCP/IP要经过必要的设置。下面是WindowsNT环境下的TCP/IP协议的安装、设置和测试方法。①TCP/IP通信协议的安装:在WindowsNT中,如果未安装有TCP/IP通信协议,可选择“开始/设置/控制面板/网络”,出现“网络”对话框后,选择对话框中的“协议/添加”命令,选取其中的TCP/IP协议,然后单击“确定”按钮。系统会询问你是否要进行“DHCP服务器”的设置。如果你的IP地址是固定的,可选择“否”。随后,系统开始从安装盘中复制所需的文件。②TCP/IP通信协议的设置:在“网络”对话框中选择已安装的TCP/IP协议,打开其“属性”,在指定的位置输入已分配好的“IP地址”和“子网掩码”。如果该用户还要访问其他WindowsNT网络的资源,还可以在“默认网关”处输入网关的地址。③TCP/IP通信协议的测试:当TCP/IP协议安装并设置结束后,为了保证其能够正常工作,在使用前一定要进行测试。笔者建议大家使用系统自带的工具程序PING.EXE,该工具可以检查出任何一个用户是否与同一网段的其他用户连通,是否与其他网段的用户正常连接,同时还能检查出自己的IP地址是否与其他用户的IP地址发生冲突。