公务员期刊网 精选范文 神经网络综述范文

神经网络综述精选(九篇)

神经网络综述

第1篇:神经网络综述范文

关键词:数据挖掘;数据库;遗传算法;神经网络

中图分类号:TP392文献标识码:A文章编号文章编号:1672-7800(2013)012-0129-02

基金项目:佛山科学技术学院重点项目(2010)

作者简介:刘晓莉(1961-),女,佛山科学技术学院副教授,研究方向为应用数学。

1遗传算法基本特征

遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种具有广泛适用性的通用优化搜索方法。遗传算法主要借用了生物遗传学的观点,通过自然选择、遗传和变异等作用机制来产生下一代种群,如此逐代进化,直至得到满足要求的后代即问题的解,是一种公认的全局搜索能力较强的算法。

遗传算法有良好智能性,易于并行,减少了陷于局部最优解的风险。遗传算法的处理对象不是参数本身,而是对参数集进行了编码的个体,可以直接对集合、队列、矩阵、图表等结构进行操作。同时,在标准的遗传算法中,基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,并在此基础上进行遗传操作; 遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜寻方向。正是这些特征和优点,使得遗传算法在数据挖掘技术中占有很重要的地位,既可以用来挖掘分类模式、聚类模式、依赖模式、层次模式,也可用于评估其它算法的适合度。

2神经网络基本特征

神经网络是人脑或自然神经网络若干基本特征的抽象和模拟,是以大量的、同时也是很简单的处理单元(神经元)广泛地互相连接形成的复杂非线性系统。人工神经网络本质上是一个分布式矩阵结构,它根据样本的输入输出对加权法进行自我调整,从而近似模拟出输入、输出内在隐含的映射关系。建模时,不必考虑各个因素之间的相互作用及各个因素对输出结果的影响机制,这恰好弥补了人们对各个因素及对输出结果的机制不清楚的缺陷,从而解决众多用以往方法很难解决的问题。

神经网络具有大规模的并行处理和分布式的信息存储,有良好的自适应、自组织性,学习能力很强,有较强的联想功能和容错功能,在解决机理比较复杂、无法用数学模型来刻画的问题,甚至对其机理一无所知的问题等,神经网络方法特别适用,是一种用于预测、评价、分类、模式识别、过程控制等各种数据处理场合的计算方法,其应用已经渗透到多个领域,在计算机视觉、模式识别、智能控制、非线性优化、信号处理、经济和机器人等方面取得了可喜的进展。

3遗传算法与神经网络混合算法在数据挖掘中的应用

作为一种有效的优化方法,遗传算法可以应用于规则挖掘,可以单独用于数据仓库中关联规则的挖掘,还可以和神经网络技术相结合,建立基于神经网络与遗传算法的数据挖掘体系,用于数据挖掘中的分类问题。

学习能力是神经网络中最引人瞩目的特征,学习算法的研究一直占据重要地位。可以将遗传算法应用于神经网络的学习过程中,这样可以避免传统的神经网络算法容易陷入局部极小的问题。有研究者提出了一种基于遗传算法的神经网络二次训练方法,可以提高神经网络的模糊处理能力,有效解决神经网络陷入局部极小的缺点,加快收敛速率,提高学习效率。也有研究者探究了基于基因重组的遗传算法优化神经网络的方法,通过训练权值来实现分类,可以提高神经网络数据分类的准确性。因此,采用遗传算法与神经网络模型相结合方法,可以解决多维非线性系统及模型未知系统的预测、评价与优化等问题,其成功案例有很多,下面是其中的几例。

一些研究者针对当前专家系统知识获取瓶颈的难题,提出了基于神经网络与遗传算法的汽轮机组数据挖掘方法。该方法首先将汽轮机组历史故障数据进行模糊化及离散化处理后,建立神经网络模型,然后再利用遗传算法对神经网络进行优化,实现了基于神经网络与遗传算法相结合的汽轮机组数据挖掘和故障诊断仿真系统,其诊断正确率达到了84%。

综合运用人工智能、计算智能(人工神经网、遗传算法) 、模式识别、数理统计等先进技术作为数据挖掘工具,可以建立可靠、高效的数据挖掘软件平台,已在很多工业控制和优化中得到应用和实验验证,并取得了满意的应用效果。例如,某铝厂根据以往不同原料成分和原料的不同配比与产品质量关系记录的数据库,应用数据挖掘软件平台,可以挖掘出适应不同原料成分的最佳配比规律,从而提高产品质量的稳定性。又如,以往在化工产品优化配方、催化剂配方优化或材料工艺优化等研究中,基本上都是采用试验改进的方式,需经过多次试验才能达到预期目的,但也有可能失败。为降低消耗, 少做试验就能达到预期目的,可采用神经网络对产品配方实验数据建模,在此基础上,再应用遗传算法对配方模型进行优化,得到优化配方。

正是遗传算法与神经网络等算法的支撑以及计算机技术的发展,目前,数据挖掘广泛地应用于天文、地理、生物信息学、金融、保险、商业、电信、网络、交通等众多领域。例如,应用在地理数据库上,主要挖掘地质、地貌特征,为寻找矿产或进行城市规划等提供参考依据;在电信Web服务器方面,可以挖掘Web日志,根据用户兴趣动态链接Web页面,统计页面链接及权威主页等,对检索页面进行聚类,方便用户找到需要的信息;在生物医学信息和DNA数据分析方面,进行遗传、疾病等数据特征的挖掘,为疾病诊断、治疗和预防研究提供科学依据;对金融数据进行挖掘,可以分析客户信用度;在CRM(客户关系模型)上使用数据挖掘,获得客户群体分类信息、交叉销售安排及开发新客户和保留老客户的策略;在电信业中使用挖掘技术,以预防网络欺诈等;应用在商业问题的研究包括:进行客户群体划分、背景分析、交叉销售等市场行为分析,以及客户流失性、信用度分析与欺诈发现;在电子商务方面,从服务器以及浏览器端的日志记录中发现隐藏在数据中的模式信息,了解系统的访问模式以及用户的行为模式,作出预测性分析等等。

4结语

神经网络和遗传算法作为数据挖掘技术,也有一些不足和缺陷。遗传算法除了要进一步改进基本理论和方法外,还要采用和神经网络、模拟退火、最近临规则等其它方法相结合的策略,提高遗传算法的局部搜索能力,从而进一步改善其收敛速度和解的品质,提高数据挖掘技术。特别是对于单调函数或单峰函数,遗传算法在初始时很快向最优值逼近,但是在最优值附近收敛较慢;而对于多峰函数的优化问题,它往往会出现“早熟”,即收敛于局部极值。因此,研究如何改进遗传算法,采用合适的算法加快寻优速度和改善寻优质量,无论在理论上还是在实践上都有重要意义。神经网络的神经计算基础理论框架以及生理层面的研究仍需深入与加强,如何提高神经网络的可理解性问题,以及研究遗传算法、神经网络技术与其它人工智能技术更好地结合,从而获得比单一方法更好的效果等问题,值得进一步探索。

虽然数据挖掘技术已得到了广泛应用,但现有的数据挖掘方法并不能完全适应所面临的具有多样性的海量数据分析的现实,急需解决的问题是:如何研究并行处理和抽样的方法,来处理大规模的数据以获得较高的计算效率;如何利用统计、模糊数学来确定隐含变量及依赖关系,开发容噪的挖掘方法,以解决异质数据集的数据挖掘问题;如何更好地进行文本数据挖掘、Web数据挖掘、分类系统、可视化系统、空间数据系统和分布式数据挖掘等新技术的应用。因此,未来数据挖掘的研究表现在数据挖掘功能、工具、方法(算法) 的拓展与理论创新,其应用的范围和深度会进一步加强。

参考文献参考文献:

[1]孟晓明.浅谈数据挖掘技术[J].计算机应用与软件,2004 (8).

[2]李慧芳,姚跃华,陈一栋.改进的遗传算法对神经网络优化的分类[J].微计算机信息,2008(15).

[3]王东龙,李茂青.基于遗传算法的数据挖掘技术应用[J].南昌大学学报, 2005(1).

[4]宋仁国.铝合金工艺优化的遗传算法[J].材料科学与工程,1998(1).

[5]韩力群.催化剂配方的神经网络建模与遗传算法优化[J].化工学报,1999(4).

[6]郭崇慧,陆玉昌.预测型数据挖掘中的优化方法[J].工程数学学报,2005(1).

[7]杨杰.用于建模、优化、故障诊断的数据挖掘技术[J].计算机集成制造系统,2000(10).

第2篇:神经网络综述范文

【关键词】极限学习机 故障诊断 神经网络

引言

随着设备复杂化程度的提高,对故障诊断的快速性和准确性提出了更高的要求。将神经网络应用于故障诊断中已成为一个非常活跃的研究领域。利用神经网络强大的分类能力,进行故障模式的分类与学习,诊断出故障。

Huang在前人研究的基础上提出了一种称为极限学习机(Extreme Learning Machine,ELM)的学习方法,在保留计算精度的同时可以大幅度的缩减训练的时间。将ELM运用到设备故障诊断中,极大提高了诊断的快速性和准确性。

一、极限学习机研究现状

ELM自2004年提出就一直受到学者的极大兴趣。我们从ELM的理论和应用两方面进行阐述。

1.1 ELM的理论

对于传统ELM算法,网络结构、激活函数类型以及隐层神经元的选择对其泛化性能都有重要的影响。为了提高计算效率,使得ELM适用于更多应用领域,研究者提出了许多ELM扩展算法。

1.2 ELM的应用

研究人员已尝试利用ELM方法解决现实中各种模式分类问题。随着ELM自身理论的进一步发展和完善,在人脸识别、文本分类、医疗诊断等领域中应用广泛。

二、故障诊断技术研究现状

故障诊断技术是由于建立监控系统的需要而发展起来的。其发展至今经历了3个阶段。新的诊断技术带来了领域内算法的革新,设备精密程度的提高也对诊断实时性提出了更高的要求。如何保证故障的快速准确诊断成了诊断技术发展重要内容。

基于神经网络的故障诊断运用广泛,然而传统的神经网络学习方法存在许多问题。与传统的神经网络相比,极限学习机方法通过随机选取输入权值及隐层单元的偏置值,可以产生唯一的最优解,并具有参数易于选择以及泛化能力好等特点,在众多领域有着广泛应用。

三、基于极限学习机的故障诊断方法研究

3.1基于ELM的故障诊断流程

(1)数据预处理。按照选取的特征向量和故障类型对故障样本进行预处理,并将处理后的样本按比例分为训练样本集和测试样本集。

(2)ELM的学习算法主要有以下3个步骤:确定隐含层神经元个数;随机设定输入层与隐含层间的连接权值和隐含层神经元的偏置;选择隐含层神经元激活函数,进而计算隐含层输出矩阵计算输出层权值。

(3)用训练好的ELM模型对测试样本集进行分类,并输出分类结果。

3.2基于改进ELM的故障诊断

针对极限学习机神经网络初始权阈值对算法性能的影响问题,提出融合遗传算法(GA)与粒子群算法(PSO)的GA-PSO算法,用于优化ELM神经网络初始权阈值。该算法将群组一分为二,分别采用GA和PSO算法,再将优秀个体进行合并,改善了PSO算法全局搜索能力,同时增强GA算法的局部搜索效能。

第3篇:神经网络综述范文

乐清市精神文明建设指导委员会办公室5月26日下发《关于文明单位电子台账建设情况的通报》,要求我公司于6月25日前完成文明单位电子台账建设。为按时按要求完成文明单位电子台账建设,并以此为契机,将集团公司以精神文明为主要内容的全面发展进行一次全面地集中地展示,以提升集团公司的品牌影响力,并为进军省级文明单位创造良好的舆论基础,现就集团公司精神文明电子台账建设提出如下策划建议。一、电子台账内容(一)分为“荣誉篇”、“法人篇”、“发展篇”、“奉献篇”、“文化篇”、“党群篇”、“创建篇”、 “创安篇”等八个部分。(二)每部分由“文字综述”和“档案陈列”组成。(三)内容提要荣誉篇文字综述——集团成长历程简介档案陈列——公司各类荣誉陈列法人篇文字综述——董事长主要成就介绍档案陈列——董事长个人荣誉陈列发展篇文字综述——集团公司发展历程(创新、管理、质量、诚信、多元化等)档案陈列——相关材料(含重要的媒体报道)奉献篇文字综述——集团在发展中对社会的贡献(捐赠、助学、纳税、安排就业等)档案陈列——相关材料文化篇文字综述——反映集团企业文化建设档案陈列——相关材料(企业文化手册等)党群篇文字综述——

文字综述——介绍集团党建、思想道德建设、工青妇建设、构建和谐企业情况等档案陈列——相关材料创建篇文字综述——集团创建文明单位的历程(或情况汇报)档案陈列——创建规划、方案、总结、申报材料、荣誉等创安篇文字综述——

文字综述——集团综合治理工作综述(综治、安全、环境、卫生、计划生育、环/安体系建设等)档案陈列——

档案陈列——相关材料二、人员分工(一)电子台账的文字、图片材料等内容由公关部负责组织(1)八篇综述文章的写作分工是宣传处长邱××负责“文化篇”、“党群篇”、“创建篇”、“创安篇”四篇文章的撰写;

内刊主编宋××负责“荣誉篇”、“法人篇”、“发展篇”、“奉献篇”四篇文章的撰写。(2)档案陈列资料由宋××搜集整合。(3)公关部总经理张××栋负责组织、审核、统稿。(二)电子台账的网络技术由信息部负责。网页设计制作等由技术员夏××负责,信息部总经理罗×组织、协调。三、时间要求所有文字及档案材料于6月20日前完成;网页设计制作及其他网络数据等于6月24日前完成,并报请集团有关领导审核同意;6月25日前完成与乐清市文明办的联络并实现网络连接。(本策划供领导参考) 策划人:集团公关部 宋×× 2005年6月6日

第4篇:神经网络综述范文

【关键词】电力系统;自动化控制技术;重要性;要点分析

电力系统自动化指的是通过各种具有自动决策、控制和检测功能的装置,利用数据传输系统和信号系统,对电力全系统、局部系统或各个元件进行远程或就地的自动控制,为电力系统的健康、稳定、安全地运行提供保证,并为用户提供合格的电能。电力系统自动化控制的基本目标在于实现电力系统在供应环节和生产环节的可持续性、有效性、安全性、稳定性和及时性,同时有助于降低电力系统运营成本,提高电力生产效率,以及实现电力系统管理的安全化、节约化、一体化、自动化。对于整个电力系统来说,自动化控制技术涉及网络覆盖系统、计算机监控系统、送电分配系统、变电站、发电厂等各个环节,需要实现所有环节的协调与控制。电力系统自动化属于电力事业发展的高级阶段,也是电力事业新技术应用与引进的主要表现。

1、电力系统自动化的构成

1.1 配电网络自动化

长时间以来配电系统都是以手工操作的方式控制的,从20世纪90年代以来,我国逐渐推行了一些具有独立功能的孤岛自动化技术,其主要发展趋势也是以现代化通信技术为基础的网络自动化。配电网络自动化通常由配电网络分析软件、地理信息系统、设备管理、自动制图和馈线自动化等几个方面组成,这也是配电网络自动化目标实现的基础。以信息技术为基础的配电网络自动化有别于传统的孤岛自动化技术,其核心技术要点在于下述三个方面,即大量的后台软件、通信技术以及丰富的智能终端。根据我国现阶段配电网络的实际运行情况,配电网络自动化目标的实现应该是分批、分期的,并且逐步完善、逐渐发展,最终获得完善的自动化配电网络系统。

1.2 变电站自动化

变电站自动化系统的建设应以信息处理技术、通信技术、现代电子技术和计算机技术为基础,实现包括远动装置、自动装置、故障录波、信号、测量、控制和继电保护等在内的变电站二次设备功能的优化设计与重新组合,也是一种综合协调、控制、测量与监视所有变电站设备运行情况的自动化系统。变电站自动化系统的建设有助于为用户提供更加优质高效的电能,提高电力企业的经济效益,降低系统维护与运行成本,提高变电站运行的稳定程度等等。

1.3 系统调度的自动化

电力系统调度的自动化是近年来我国电力系统中发展速度最快的一项技术,其基本功能构成包括:变电站综合自动化系统;发电厂运营决策、电力市场可靠性与运营、电力系统经济调度与运行;电力系统数据监控与采集,这也是调度自动化实现的前提和基础。电力系统自动化目标实现过程中,电力系统调度自动化是其关键与核心,会直接影响着电力系统自动化的稳定性与质量。

2、电力系统自动化控制技术要点和特征

第一,经过适当的调节,可以从中发现各个元件和各个子系统协调运行的规律与特征,通过经常性的实践与总结,在节能、高效原则的指导下,选择能耗最低廉、运行最安全、供电最优质、结构最优化的电力系统自动化建设模式。

第二,以电力系统自动化的建立为基础,设定有关技术规范,将按照电力系统实时运行状态和可行性分析结果,作为电力自动化系统有利决策和合理调控的可靠依据,并从宏观和微观上对整个系统与各个部件进行综合调控。

第三,电力系统运行的安全性与可靠性是电力系统自动化建设的基本保证。所以,电力系统工作人员需要在电力系统进行送电服务支出,通过系统化的调研,对电力系统的安全运行、各个部件和单元进行严密的监测与努力的收集,并对所收集的各项参数实时科学化的处理。

第四,自动化电力系统的建立和应用,有助于将传统的劳动密集型、机械化十分落后的生产方式,逐渐转变为现代化的生产模式,从而极大地降低线路故障短路的发生率,避免发生大面积停电事故,同时,有助于实现稳定可持续化服务、一体化集成生产、事故发生率为零、高度安全生产的目标,而且能够降低劳动强度、简化生产流程、节约物力和人力投入、缩短生产周期,最终实现电力系统的有序、安全运行。

3、电力系统自动化控制的技术分析

第一,电力系统自动化控制技术中的智能综合控制技术。综合性是智能综合控制技术的基本特征,其主要原因在于,这一技术不仅仅具有智能控制功能,而且符合自动化控制与现代化控制的基本方法和基本理论,从而体现了各种先进技术与现代化理念的相互结合。模糊控制与神经网络相结合,模糊控制与专家系统相结合,专家系统与神经网络相结合,自适应控制、模糊控制与神经网络等技术的相互融合是自动化电力系统建立过程中最为广泛应用的一种方法。神经网络的主要特征在于非结构化的信息处理方法,而模糊系统则主要应用于结构化信息的处理过程中[1]。

第二,专家系统的主要控制技术。专家系统也是电力系统自动化建设过程中广泛应用的一种系统,且其涉及内容较多。不仅涉及识别紧急状态或警告状态等特殊状态的能力,而且涉及状态分析转换、系统恢复控制能力以及紧急处理能力等等。尽管电力系统实际运行过程中,专家系统得到了广泛的应用,然而,这种系统也存在自身无法避免的缺陷,且具有显而易见的局限性,包括无法模拟电力专家的创造能力等等[2]。

第三,以神经网络控制为基本原理的控制技术。从理论角度来看,鲁棒性、并行处理和非线性是神经网络控制技术的主要特点,而自组织学习能力是神经网络控制技术的另一个典型特征。因为神经网络具有上述的优势与特征,因而其逐渐受到了人们的关注与认可。神经网络控制技术的主要连接方式为通过特定的方式,利用大量的神经源进行连接,使隐含的权值与大量的信息相互连接。同时,能够按照特定的算法调节神经权值。神经网络即为m维空间向n维空间的一种非线性映射。

4、总结

近年来,我国对于电力农网改造和城网改造都投入了较大的关注,且其改造力度与进程都有所扩大,这也对我国电力系统自动化控制技术的发展提出了更高、更新的要求。作为电力工作者,我们需要以保证电力系统的安全运行为基础,提高电力系统的运行质量和效率。综上所述,要想实现电力系统的自动化改革与发展,就必须综合利用现代通讯技术和计算机网络基础,更新管理理念,利用各种自动化控制技术,促进电力系统质量的提高。

参考文献

第5篇:神经网络综述范文

 

目前国内外常用的信息安全风险评价模型主要由层次分析法(AHP)、基于概率统计的ALE算法,模糊综合评价法等,也取得了一定的研究成果。但上述算法的基本思想是基于线性映射和概率密度分布的,即各风险指标与最终评价结果之间存在着线性关系[2]。然而,这种关系的存在是否科学至今也没有得到准确的答复,同时这些方法在实施时虽然给出了定量计算的算法,但操作较为繁琐,难以达到快速识别的要求。目前应用较广泛的BP神经网络评价算法存在着网络参数难确定、收敛速度较慢且易陷入极小值等问题。为了解决上述问题,本文应用鱼群算法对BP神经网络进行了改进,结合信息安全评价实例进行了测试,并将测试数据与标准BP神经网络进行了比较与分析,取得了理想的结果。

 

一、信息安全的概念

 

所谓的信息安全评估指的是通过分析信息系统所包含的资产总值、识别系统本身的防御机制以及所受到的危险性系数,利用数学模型综合判断出系统当前的风险值。信息安全风险评估主要包括三方面的内容,分别是资产总值识别、外部威胁识别以及脆弱性识别。资产总值识别是为了识别出系统所涉及的资产总值,外部威胁识别指的是识别当前状态下系统受攻击或威胁的程度,而脆弱性识别指的是系统自身的脆弱性程度。其中综合考虑外部威胁以及内部脆弱性可以得出发生风险事件的危害性,而自然总值识别再加上脆弱性识别就可以得到系统的易损性,基于上述过程可以得到信息安全系统的风险值。

 

二、基本BP神经网络算法

 

BP神经网络算法是一种采用误差反向传播的多层前馈感知器。其特点是具有分布式的信息存储方式,能进行大规模并行处理,并具有较强的自学习及自适应能力。BP网络由输入层(感知单元)、计算层(隐藏层)、输出层三部分组成。输入层神经元首先将输入信息向前传递至隐含层节点,经过激活函数预处理后,隐层节点再将输出信息传送至输出层得到结果输出。输入层与输出层节点的个数取决于输入、输出向量的维数,隐含层节点个数目前并没有统一的标准进行参考,需通过反复试错来确定。根据Kolmogorov定理,具有一个隐层的三层BP神经网络能在闭集上以任意精度逼近任意非线性连续函数,所以本文选择单隐层的BP神经网络。

 

三、人工鱼群算法

 

3.1基本原理

 

通过对鱼类觅食的观察可知,鱼类一般能自行或者尾随其他同伴找到食物数量相对充足的地方。因此,一般鱼类数量较多的地区即为食物相对充足的区域。人工鱼群算法是指通过长期对鱼类觅食行为的观察,构造人工鱼来模拟鱼类的觅食、群聚、尾随以及随机行为,从而完成全局最优值的寻找。算法所包含的基本过程如下:

 

觅食行为:鱼类会利用视觉或嗅觉来感知水中食物浓度的高低,以此来选择觅食的路线。

 

聚群行为:鱼类一般会以群体形式进行觅食,以此来躲避天敌的伤害并以最大概率获得准确的觅食路线。

 

尾随行为:当群体中的某条鱼或几条鱼寻找到食物后,其附近的其他同伴会立刻尾随而来,其他更远处的鱼也会相继游过来。

 

随机行为:鱼在水中的活动是不受外界支配的,基本上处于随机状态,这种随机性有利于鱼类更大范围的寻找食物及同伴。

 

3.2 鱼群算法优化BP神经网络的原理

 

BP神经网络在求解最优化问题时容易陷入局部极值,并且网络的收敛速度较慢。鱼群算法通过设定人工鱼个体,模拟鱼群在水中的觅食、尾随和群聚行为,通过个体的局部寻优,最终实

 

现全局寻优。人工鱼在不断感知周围环境状况及

 

同伴状态后,集结在几个局部最优点处,而值较大的最优点附近一般会汇集较多的人工鱼,这有

 

助于判断并实现全局最优值的获取。因此用人工鱼群算法来优化BP神经网络是一种合理的尝试。

 

3.3 具体工作步骤

 

人工鱼群算法用于优化神经网络时的具体步骤如下:

 

①设定BP神经网络结构,确定隐层节点数目;

 

②设定人工鱼参数,主要包括个体间距离、有效视线范围以及移动步长等;

 

③人工鱼进行觅食、群聚及尾随行为来优化BP神经网络;

 

④通过设定的状态参量,判断是否达到目标精度;

 

⑤若达到精度要求则输出网络优化权值,并执行网络循环,否则继续改化参数进行优化;

 

⑥输出最终优化参数并进行计算机网络安全评价。

 

四、仿真实验

 

将信息安全风险评估常用的3项评价指标的分值作为BP神经网络的输入,网络的期望输出只有一项,即安全综合评价分值。目前用于信息安全风险评价的数据还很少,本文采用文献[3]所列的15组典型信息安全单项指标评价数据,其中1-10项作为训练,11-15项用于仿真。通过实际实验分析,本文将权值调整参数α=0.1,阈值调整参数β=0.1,隐层神经元数目为6,学习精度ε=0.0001。网络经过2000次训练,收敛于所要求的误差,人工鱼群算法的相关参数: 种群大小为39;可视域为0.8;最大移动步长为0.6;拥挤度因子为3.782。然后对检验样本及专家评价样本进行仿真,结果如表1所示。可以看出,鱼群神经网络得到的仿真结果与期望值之间的平均误差为0.001,而标准BP神经网络为0.0052,所以鱼群神经网络的得到的仿真精度较高,取得了理想的实验结果。

 

五、结论

 

本文将鱼群算法和神经网络结合起来对信息安全评价进行了研究,得到了如下几个结论:

 

(1) 基于鱼群算法优化后的BP神经网络具有收敛速度快、拟合精度高等优点,克服了标准BP神经网络收敛速度慢、容易陷入局部极小值的缺点。同时,优化算法编码过程简单,并具有较强的鲁棒性。

 

(2) 本文采用的实验数据仅有15个,基于鱼群算法优化后的BP神经网络精度有明显提高,避免了由于样本数量少造成的拟合精度低等缺点。

 

(3) 通过将标准BP神经网络算法与鱼群神经网络算法进行对比发现,后者的收敛速度明显加快并且自组织能力也有一定提高,在实际的工程建设中可以将其代替传统的BP神经网络算法来进行信息安全的风险评估。

第6篇:神经网络综述范文

关键词:控制系统;故障诊断;故障检测;诊断方法

引言

自20世纪60年代末美国国家宇航局就创立了美国故障预防小组以来,故障诊断技术逐渐发展起来的一门以数学、物理、现代控制论、计算机工程、通讯技术、信号处理、模式识别、人工智能、人工神经网络以及相应的应用学科为基础的多学科综合交叉的新学科。它通过获得机械设备在静止或运行中的状态信息,并参考设备过去的运行经历,来获得设备的实时状况,并推断未来的趋势,从而确定必要的维修策略。本研究主要针对控制系统的故障诊断方法进行综述。

1 基于解析模型的方法

该方法是研究最早、最深入、最成熟的方法,需要建立被诊断对象的较精确的数学模型,包括状态估计方法、等价空间方法和参数估计方法。尽管这三种方法是独立发展起来的,但它们之间存在一定的联系。

1.1状态估计方法

状态估计方法的基本思想是利用系统的解析模型和可测信息,设计检测滤波器(观测器) ,重建系统某一可测变量,然后由滤波器的输出与真实系统的输出的差值构造残差,再对残差进行分析处理,以实现系统的故障诊断。在能够获得系统精确数学模型的情况下,状态估计方法是最直接有效的方法,然而在实际中,这一条件往往很难满足。所以目前对于状态估计方法的研究主要集中在提高检测系统对子建模误差、扰动、噪声等未知输入的鲁棒性及系统对于早期故障的灵敏度。

1.2等价空间法

等价空间法的基本思想是利用系统的输入/输出的实际测量值检验系统数学模型的等价性(即一致性),以检测和分离故障。其在诊断时存在问题:低阶等价向量在线实现较简单但性能不佳,而高阶等价向量能带来较好的性能却计算量大,且漏报率高。因此,目前的研究普遍都采用改进过的等价空间法[1]。

2 基于信号处理的方法

当难以建立被控对象的解析数学模型时,可采用基于信号处理的方法。此方法是利用信号模型(如相关函数、频谱、高阶统计量、自回归滑动平均、小波变换等)直接分析可测信号,提取方差、幅值、频率等信息来进行故障检测与诊断。这种方法适用于线性系统和非线性系统。但是,避开对象数学模型的优点是实现简单、实时性较好;缺点则是对潜在的早期故障的诊断显得不足,多用于故障检测,对故障分离和诊断的效果不很理想,若与其他方法结合可望提高故障诊断性能。

2.1基于小波变换的方法

小波变换是一种信号的时间—尺度分析方法,具有多分辨率分析的特点。在时频域都具有表征信号局部特征的能力,适合于非平稳信号的奇异性分析。利用连续小波变换可以区分信号突变和噪声,而利用离散小波变换可检测随机信号频率结构的变化。小波变换对噪声的抑制能力较强,具有较高的灵敏度,运算量也不大,是一种很有前途的方法。近年来,利用小波变换的优点,将小波变换与数学模型、神经网络、专家系统、模糊理论、矩阵奇异值等方法相结合,提出了一些新的方法,进一步提高了动态系统的故障检测与诊断性能,在实际工程应用中获得成功。

2.2主元分析法

主元分析法(Principal Component Analysis,PCA)是依据输入变量的线性变换,由输入变量相关矩阵的主要特征值的大小来确定坐标变换和变量压缩,目的是在数据空间中找到一组m个正交基,这组正交基最大可能地表示数据的方差和协方差,以便将数据从原始的n维空间映射到由这组正交基所构成的m维子空间上,从而达到降维的目的(m

3 基于知识的方法

人工智能及计算机技术的快速发展,为故障诊断技术提供了新的理论基础,产生了基于知识的诊断方法。此方法与基于信号的故障诊断方法类似,也不需要定量的数学模型。不同之处在于,它引入诊断对象的许多信息,特别是可以充分利用专家诊断知识,而且它具有“智能”特性,是一种很有生命力的方法,尤其是在非线性系统领域。

3.1 基于神经网络的方法

神经网络具有模拟任意连续非线性函数、从样本学习、大规模并行处理、自适应、自学习、容错、联想记忆、分布式信息存储、推理、处理复杂多模式等优良性能,使其在复杂系统的监测及诊断中发挥着重要作用,为故障诊断技术开辟了一条有效途径。由于神经网络从故障诊断实例中学到的知识只是一些分布式规则,诊断推理过程不能够解释,缺乏透明度。因此,近年来,基于神经网络的故障诊断研究开始向神经网络与其他诊断方法相结合的方向发展。比如把模糊数学与其相结合,可以在神经网络框架下引入定性知识,以取得更好的诊断性能;采用多个神经网络的诊断方法可以提高故障诊断的可靠性。

3.2 基于模糊数学的方法

模糊故障诊断方法是利用集合论中的隶属函数和模糊关系矩阵的概念来解决故障与征兆之间的不确定关系,进而实现故障的检测与诊断。模糊诊断的基本原则有:分层分段诊断,逐步深入原则;假设与验证相结合原则;综合评判原则;获取信息原则;通过对外在特性的考证来判断系统内部结构的劣化原则;对比判断确定故障原则;找出最严重的故障点原则。单纯利用模糊推理进行故障诊断具有一定的局限性,一般利用复合式方法来进行故障诊断,如模糊故障树法、模糊专家系统法、模糊神经网络法、模糊小波神经网络法等,这些方法的诊断性能得到明显提高。

4 故障诊断技术发展趋势

随着传统控制系统向网络化发展,近年来远程网络控制系统得到广泛重视,并涌现很多成果。网络控制系统具有网络时延、数据包时序错乱甚至数据包丢失等缺点,因此为保证网络控制的可靠性有必要针对远程网络控制系统故障诊断问题进行研究。远程诊断系统是一个分布式控制系统,它基于监测设备、计算机网络及软件,实现对监测信息的处理、传输、存储、查询、显示和交互,以达到诊断专家无须到现场就可以完成对远距离发生的故障的诊断,并可以实现异地专家的实时协同诊断。其研究内容包括远程监测、远程诊断、协同诊断等几个主要部分。5 结语

控制系统故障诊断是一个复杂的问题,对于不同的研究对象选择不同诊断方法有积极意义。而有效方法的选择很大程度上取决于实际因素。随着微电子、计算机、智能技术和网络技术的发展,故障诊断技术也得到了不断的发展和进步,故障诊断方法呈现向复合式、综合化方向发展的趋势,且设备故障检测诊断技术的准确性会越来越高,操作使用越来越方便,在设备维修中会起着越来越重要的作用。它可以直接提高企业设备管理和维护水平,提高企业效益和国际竞争力[3]。

参考文献

[1] 陆雪梅, 尚群立. 动态控制系统的故障诊断方法综述[J]. 机电工程, 2008, 25(6): 103—107

第7篇:神经网络综述范文

关键词:雷达干扰效能评估;RBF神经网络;BP神经网络;隶属度函数

DOIDOI:10.11907/rjdk.151190

中图分类号:TP301

文献标识码:A 文章编号:16727800(2015)006005103

基金项目基金项目:

作者简介作者简介:员志超(1980-),男,山东泰安人,硕士,山东科技职业学院信息工程系讲师,研究方向为智能识别、数据库技术、图像处理。

0 引言

雷达干扰机的干扰能力在现代战争中越来越重要,如何评估干扰机的综合干扰效能成为一项重要课题。雷达干扰效能与雷达、干扰机的工作参数、空间电磁环境及战场环境等因素关系密切,如何有效利用错综复杂的影响因素对雷达干扰效能进行准确评估,一直是电子对抗领域的难点问题。

针对干扰效能评估问题,国内外专家学者提出了诸多行之有效的方法,比如模糊多属性决策法[1]、灰色关联法和层次分析法、计算实验方法[2]等。以上方法都需要相关评价专家对所评估问题的各层权重进行赋值,这就使得评估或多或少受到主观因素影响。雷达干扰效能评估是诸多因素共同影响的非线性系统,而神经网络算法作为一种新型的人工智能算法,能够逼近任意复杂的非线性系统,具有较好的学习能力、容错能力和稳定性[3],所以神经网络算法越来越多地用于雷达干扰效能评估[4]。

本文探讨了一种基于 RBF 神经网络的干扰评估方法:首先建立雷达干扰效能评估指标体系, 然后根据该指标体系建立用于效能评估的RBF 网络, 并选定足够的样本训练所构造的RBF神经网络, 通过动态的自适应调整, 直到满足误差要求,使该网络成为干扰效能评估的有力工具[5]。

1 RBF神经网络基本原理

C.Darken和J.Moddy早在20世纪80年代就提出了RBF神经网络(径向基网络),它具有单隐层的三层前馈网络,能够以任意精度逼近任意连续函数。

1.1 RBF神经网络基本思想

RBF神经网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入直接映射到隐空间。当RBF的中心点确定以后,也就确定了这种映射关系。由于网络的输出是隐单元输出的线性加权,因而输出空间与隐含层空间的映射是线性的,通过线性方程对网络权值进行求解,从而得到目标函数的最优解。

RBF作为一种前向神经网络,它是以函数局部逼近理论为基础的,具有针对复杂系统的映射能力和最佳逼近能力,且不存在局部最优解问题,因而在诸多领域获得了广泛应用。

1.2 RBF神经网络基本结构

RBF神经网络由输入层、隐含层、输出层构成,图1所示为m-j-n结构的RBF网络,该网络有m个输入,j个隐节点,n个输出。

2 干扰效能评估模型

2.1 评估指标体系

雷达系统是由多个雷达发射站和接收站组成的雷达网,而干扰系统通常由多部干扰站和多种干扰样式构成综合干扰系统,各雷达站的不同工作状态和干扰站的不同干扰策略都将影响最终的干扰效能。单一的干扰评估指标很难对整个动态的干扰过程进行综合评估,因而必须选取多个干扰效能评估指标构成评估指标体系,才能对雷达干扰效果进行综合评估。

影响干扰效能评估的因素主要分为以下几类:①干扰功率;②干扰频率;③干扰样式;④干扰时机,如噪声压制、假目标欺骗等;⑤雷达的工作体制和状态,如相控阵雷达的搜索状态、跟踪状态等;⑥雷达的抗干扰措施,如低截获概率(LPI)波形、旁瓣匿影、参数捷变等。通过对诸多因素的综合分析,这里选取干扰功率、干扰频率、干扰样式、干扰时机4个指标构成评估指标体系[6],对雷达干扰效能进行综合评估。

2.2 指标体系隶属度函数

干扰效能的好坏程度是通过对雷达干扰效能评估指标的量化描述得到的,这里采用[0,1]区间的实数值对干扰效能进行量化分析,表达式为:

式(3)中x值表示干扰效能评价的好坏程度。对于本文选取干扰功率、干扰频率、干扰样式、干扰时机4个指标进行量化时,通常建立各个指标的隶属度函数对x进行计算。通过对各个指标的综合分析,确定4个指标的隶属度函数。

(1)干扰频率隶属度函数确定。干扰机的干扰频带是否能够覆盖雷达的工作频带,是决定干扰机对雷达能否进行干扰的重要因素。因此,要定义干扰频率瞄准程度函数来评价干扰机对雷达在频率上的干扰效果。

(4)干扰样式隶属度函数。

雷达的技术体制决定了干扰机对雷达干扰样式的选择,同一台干扰机对雷达实施不同的干扰样式会产生不同的干扰效果。将干扰样式和雷达技术体制的映射确定成干扰样式隶属度函数,一般通过专家评审的方法来确定雷达的隶属度准确值。

2.3 RBF神经网络结构

传统的网络结构是使隐含层单元数与输入向量的元素相等,当输入矢量过多时,会导致RBF网络的训练和学习速度过慢。为解决此问题,我们对RBF网络结构进行了改进。基本改进原理是将神经元的初始个数设为0,通过网络学习、训练检查输出误差,使网络自动增加神经元。每次训练迭代,是将RBF产生的最大误差所对应的输入向量作为权值向量,增加一个新的隐含层神经元,然后检查新网络的误差,循环此过程直到满足误差要求或达到最大隐含层神经元数为止。比较可知,改进的RBF网络具有输出与初始权值无关、结构自适应确定等优点。

2.4 学习样本构造

构造用来训练神经网络的学习样本直接关系到评估结果的可信度。为了反映雷达干扰的真实效果,使评估结果符合实际,本文通过以下3种方法来构造网络学习和训练的原始样本。

(1)若4个指标隶属度的值都在[0.9,1]区间内,则雷达干扰效能评估为优;若值都在[0.8,0.9]区间内,则雷达干扰效能评估为良;若值都在[0.6,0.8]区间内,则雷达干扰效能评估为中等;若值都在[0.5,0.6]区间内,则雷达干扰效能评估为差;若值都小于0.5,则干扰效果评估为很差。若4个隶属度值中任何一个小于0.2,雷达干扰效能评估都为很差。

(2)利用典型试验数据作为RBF网络输入样本对网络进行训练,使得通过网络学习后的雷达干扰效能评估结果逼近真实值。

(3)根据专家系统和统计数据对样本进行综合分析,验证样本的合理性。

3 仿真实例

对上述RBF神经网络算法和BP神经网络算法进行仿真实验。利用Matlab编程实现基于RBF神经网络算法和BP神经网络算法的两种评估方法,然后输入样本数据进行训练,用以构造并调整网络结构以及网络参数,通过测试样本进行测试评估。两种方法的仿真测试结果如图3、图4所示。

由图3和图4可以看出,两种神经网络算法的预测输出都接近期望输出, 表明两种神经网络算法都具备了干扰效能评估与预测能力,但相对于BP神经网络算法,RBF神经网络算法吻合效果、干扰效能的预测精度更好。

为了比较两种网络输出性能的稳定性,我们进行多次仿真实验,实验表明,对于同一组测试样本,RBF网络测试样本输出是固定的,而BP网络每次输出都是波动的,甚至给出了不同的评价结果,造成干扰效能评估的误判。表1是针对相同测试样本的500次蒙特卡洛实验。

通过表1分析可知,在应用RBF网络对10个测试样本进行仿真时,正确评估的概率都为100%,取得了很好的评估效果。而BP网络的测试样本输出出现了很大波动,在有些样本点取得较好的评估效果,有些样本点出现较多的错误评估,导致整体评估效果不是很理想。这主要是因为BP网络隐含层节点数很难确定,从而难以得到最优的网络结构,同时由于网络的初始权值和阈值是随机获取的,通常使得网络陷入局部寻优。

由于RBF网络能够依据误差要求自适应调整网络结构,所得到的网络结构通常是最优的,而且具有训练速度快、与网络的初始权值无关以及较强的泛化能力等优点,从而克服了BP神经网络的不足,因此RBF网络比BP网络评估效果更好。

4 结语

雷达干扰效能评估受诸多因素共同影响。本文将RBF神经网络应用在干扰效果评估模型中,通过选取干扰效能评估指标体系建立指标隶属度函数,利用专家经验和统计数字的综合分析,构建该神经网络的训练样本, 然后对样本进行学习训练,使得通过网络学习后的雷达干扰效能评估结果满足精度要求。仿真效果表明,RBF神经网络比BP神经网络具有更好的评估效果。训练好的RBF神经网络可“离线”运行,不再依靠专家系统,消除了评估中人为因素的影响,具有较高的应用价值。

当然,本方法在利用RBF神经网络解决干扰效能评估时,怎样使用专家系统更加合理构造学习样本等问题,还需要深入研究及改进。

参考文献:

[1]庄瑾,张善文.防空作战系统效能的模糊综合评判研究[J].电光与控制,2005,12(4):4446.

[2]王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,6(5):893897.

[3]阎平凡, 张长水.人工神经网络与模拟进化计算[M].北京: 清华大学出版社, 2001.

[4]高彬,郭庆丰. BP神经网络在电子战效能评估中的应用[J].电光与控制, 2002(1):6971.

第8篇:神经网络综述范文

关键词:电力系统;负荷预测方法;电力负荷

中图分类号:TM714 文献标识码:A 文章编号:1009-2374(2013)32-0114-02

1 电力负荷预测综述

负荷预测的前提是充分考虑关键系统参数、自然环境、社会政策和增容决策等条件,探索出一套能够科学处理过往数据、有效预测未来数据的数学算法,并保证预测结果只在小范围内波动,确定某些特殊时刻的负荷值。根据预测期限,负荷预测分为超短期预测、短期预测、中期预测和长期预测。

2 电力负荷预测方法综述

2.1 人工神经网络

人工神经网络属于高度非线性系统,它模仿人脑神经系统进行自主学习和问题处理。人工神经网络有很多神经元节点,它们具有并行运算功能,互相之间由相应权值连接以构成网络,借助激励函数,实现输入变量序列到输出变量序列之间的非线性映射。人工神经网络对非线性、非结构性、模糊性规律的适应性很强,具有良好的记忆功能、鲁棒性、映度以及完备的自学习能力,这也使得该技术成为近年来负荷预测领域的研究重点。有学者采用地柜人工神经网络系统预测某地区电力负荷短期情况,借助梯度下降算法,大大提高收敛速度,仿真结果表明,该方法收敛速度和运算结果相比传统方法有很大提升。但是,典型人工神经网络也存在学习参数设置不便、收敛缓慢、运算量大、网络结构模糊等弊端。有研究在相关论文中针对BP算法陷入局部极小的问题进行了讨论,并提出了相应的解决方案。另外,神经网络如能结合遗传算法增强全局搜索能力,加强局部寻优能力构成遗传神经网络,则能进一步加快运算速度,提高结果准确性。采用神经网络进行电力系统负荷预测时,网络输入变量的选择是一个关键点,为了优化变量甄选,有人提出使用模糊粗糙集理论先对信息进行预处理;以此算法结果作为BP网络的预设变量开展训练。该方法将历史时间序列、外部气象条件等各种因素都考虑在内,为寻找神经网络输入变量提供了一种新思路。同时,规避了因为输入变量规模过于庞大而引起的网络拓扑结构复杂、收敛速度慢等缺陷。相关的实验表明,该方法行之有效。

2.2 模糊预测法

该方法基于模糊理论,先行分析过往的工作经验、历史数据,以一种规则的形式呈现出来,并抽象出可在计算机上运行的机读代码,进而展开各种计算工作。模糊预测法能够很明确地描述专家意图,对电力系统中不规则现象进行描述,很适用于中长期电力负荷预测;但模糊预测法学习能力差,极易受到人工干扰。模糊理论应用于电力负荷预测时,有三种常见数学模型,即:指数平滑过渡法、线性回归法、聚类预测法,三种数学模型各有千秋,它们的预测精度都很高,相比传统算法测量误差也小得多。有研究表明,基于最佳聚类F选优法的改进型模糊聚类电力负荷预测算法,在计算年度用电量时,预测结果很准确。有部门基于该算法对增城地区2005年和2010年的年度用电量进行预测,结果与实际测量相差不大。神经网络与模糊逻辑算法组合使用,相比单一神经网络算法,充分利用了神经网络强大的学习功能,又洗去了模糊逻辑主观经验方面的劣势,考虑了温度变化和节假期对系统负荷的影响,能够提高负荷预测结果准确度,特别是对周末和节假期负荷预测很有效。也有学者通过RBF试图寻找负荷变化的一般规律,结合模糊理论计算负荷尖峰值和低估值,一定程度上解决了负荷影响因素不明确的问题。该方法充分利用了神经网络和模糊推理理论在处理不确定参数方面的独到之处,很好地改善了预测精度。

2.3 数据挖掘

顾名思义,数据挖掘就是从浩如烟海的数据中挖掘出隐含信息,并尽力将其表述为直观易懂的形式。在处理大数据、剔除冗余信息方面优势很大。决策树、神经网络、关联规则、聚类分析、统计学模糊集、粗糙集在各领域的数据挖掘工作中得到了重要应用。有人根据数据挖掘过程中时间序列的相似性原理,研究电力负荷预测方法,获得了很好的应用效果。基于最优区间划分和单调递减阈值函数聚类法,结合KOHONEN网绘制负荷变化曲线,修正死区数据。也有学者利用数据挖掘技术的结果作为向量机训练样本,减少了数据处理规模,提高了预测速度和运算精度。

2.4 专家系统

专家系统加入了人类探索自然过程中的知识经验,模拟人类思维决策过程,求解问题的过程类似于人类专家的思维模式。专家系统比模糊预测法优越的一点是,给出相当于专家水平的量化计算机语言,转化了人类难以量化的经验数据,透明性和交互性极佳,并能给出结论的对应缘由,方便工程人员检查推理过程是否存在错误,并及时更正。由于算法相对复杂,运行速度较慢,学习能力也一般,无法较好地处理模糊数据,对规则很依赖,普适性较差,不能推广到所有系统。有文献分析认为,专家系统可以准确预测中长期负荷,要考虑原始数据预处理、冲击负荷影响、负荷周期等因素,保证负荷预测精度,并尽量贴近生产实际需要。专家系统的模糊推理规则形式决定了规则数目,合理的推理规则能够简化运输,也为人工总结专家经验并优化规则提供了可能性,提高了算法速度。有学者在普通专家系统的基础上研发了基于案例推理的经验导向型专家系统,相关实验结果证明该方法获取知识较为简洁、记忆能力好、用户界面友好,在实用性方面优于规则专家系统和人工神经网络技术。也有工程人员结合径向基神经网络专家系统,并基于该模型开发出数学运算软件,在西北电网得到了应用,该方法比BP神经网络的预测精度更高、实用性更好。

2.5 支持向量机

SVW基于统计学理论,在有限样本前提下,提出满足VC维理论和结构风险最小化原则的机器学习规律,通用性好、全局最优、计算速度快。但要依赖经验确定初值和核心运算函数,受人为因素影响较大。而且,对模糊现象的描述能力一般,模型误差会导致收敛值与实际值相去甚远。蚁群优化算法能够对其进行优化,在短期负荷预测中效果甚佳。经过大量实践,最小二乘支持向量机回归算法,很适用于短期负荷预测,借助不同时刻的样本训练,以最优线性回归函数为算法依据,在尽可能减小负荷样本点漂移的基础上,又缩小了泛化误差上限,具有较好的前瞻性。还有人将模糊回归法植入支持向量机模型,不仅提升了预测精度,而且提供了更多运行信息。

3 结语

本文对常见的智能预测技术进行了全面分析。我们不难看出,单一负荷预测法很难满足实际要求,应该结合地区状况选择方法组合,唯有如此才能取得更好的电力预测效果,这也意味着组合预测将势必成为以后的研究热点。

参考文献

[1] 段玉波,曲薇薇,周群,张彦辉.应用递归人工神经网络预测电力短期负荷[J].佳木斯大学学报(自然科学版),2010,(3).

第9篇:神经网络综述范文

关键词:物流园区物流量处理能力;神经网络预测算法;Matlab软件

中图分类号:F250 文献标识码:A

1 物流园区概述

1.1 物流园区物流量概念

物流量作为物流学科中一个十分重要的概念,至今仍没有明确的定义,有学者认为物流量是指物流活动的各个作业环节产生的实物(物料、零部件、半成品、产成品等)在物流活动的整个过程中(包括库存量、终端配送量、内向物流量、装卸搬运量和运输量等)的数量的总和,本文即将物流量如此定义。

1.2 物流园区的功能分区

物流园区根据规划的功能以及不同功能区的业务特点、作业方式和布置形式,会选择和设定不同的功能分区,包括以下7种常见的物流功能分区:仓储区、加工区、配送区、集运区、联运区、综合服务区、行政区。

1.3 物流园区货物分类

目前很多部门和单位从各自的角度提出了多种货物分类的方案。其实,不同的货物分类标准都是建立在实际应用和管理需求之上,本文对进入物流园区的货物进行了简要的分析,并将其分为4类货物:集装箱类货物、笨重货物、城市消费品、冷链货物。

2 园区物流量计算

2.1 传统物流量计算方法概述

2.2 数据准备

2.2.1 全国物流园区各功能区的面积

2.2.2 各类货物在物流园区停留时间

2.2.3 处理单位重量各类货物所需面积

前文在计算各类货物的平均库存期时假设作业发生在仓储区,因此此处计算物流园区处理单位重量各类货物所需面积也是按货物在仓储区中处理所需的面积,其它功能分区中的作业暂不考虑,在仓储区中处理不同单位重量货物需要的面积如表3所示。

2.2.4 货物构成比例

各个城市和区域的社会环境不一样,它的货物构成比例也不固定,对于区域中的物流园区,由于功能不同、位置不同,所处理的货物种类也不同,不能简单的一概而论,这些都需要实际调研或查询相关统计数据得到。经查询得表4给出各类货物的构成比例情况。

2.3 部分园区物流总量计算

由于园区物流量仅仅来源于仓储区、加工区、配送区、集运区和联运区,与综合服务区和行政区的关系并不密切,本文考虑整个园区的物流量即上述几个区域处理的物流量之和。

应用上述计算方法,可以得到其他物流园区的全年物流量,具体数据如下表5所示。

3 基于MATLAB 的神经网络预测模型预测物流园区物流量

3.1 人工神经网络

常用的经典预测方法都存在一个共同的局限性,即要求预先知道预测对象的数学模型,但是在实际应用当中,许多对象具有复杂的不确定性和时变性,很难建立其预测模型。而神经网络的出现克服了建立模型及参数估计的困难,它不需要建立具体的数学函数模型就可较精确的描述因素之间的映射关系。这样可以降低预测工作的难度。因此神经网络预测模型的研究已逐步成为预测方法研究的一个重要内容[6]。

对于物流园区系统而言,由于系统的复杂性, 各因素的关联性很难用仅仅一个准确的数学解析式来描述, 神经网络预测模型能较精确地描述因素之间的映射关系而不需要确定的函数形式,因此,神经网络预测方法为物流园区物流量预测提供了一个新的途径。

人工神经网络(Artificial Neural Networks,ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是以计算机网络系统模拟生物神经网络的智能计算为基础,由大量处理单元互联组成的非线性、自适应信息处理系统,通过模拟大脑神经网络处理、记忆信息的方式进行信息处理,其具体结构如图1所示。

模型的结构采用三层网络I×H×O,其中I、H和O分别是输入层、隐含层和输出层中的节点数。

在MATLAB环境下的BP 算法的程序设计主要是调用MATLAB工具箱的相关函数[7]。

3.2 基于MATLAB的神经网络预测模型应用

3.2.1 模型建立

(1)预测指标的选择

本文选择表3中全国部分物流园区各模块面积作为样品输入,表5中各园区物流处理量作为分析预测模型的预测指标,即构造了5组输入输出样本。

(2)网络结构的确定

从总体来看,权值和阈值是随着迭代的进行而更新的,并且一般是收敛的,但是权值的初始值太大,可能导致网络很快就达到饱和,另外权值的初始值对网络的收敛速度也有一定的影响。newff函数在生成BP网络时即对网络各层的权值和阈值自动进行初始化。

3.2.2 模型验证及预测结果

利用所得的网络结构和初始条件,以全国部分物流园区5个模块面积作为训练样本,预测该物流园区物量,以验证预测模型的有效性,所得结果如表6中预测值所示。

从表6和图2可以看出,5个训练样本的模拟输出与期望输出较为匹配,相对误差均在正负2%的范围内。模型的收敛效果较好。经过上述训练所得到的权重体系及偏置值所确定的网络就是所要建立的预测人工神经网络模型。

参考文献:

[1] 洪再生,丁灵鸽. 大型空港物流园区的规划要素分析及设计实践——以天津空港国际物流园区为例[J]. 城市规划学刊,2009(4):46-53.

[2] 张建明,明瑞江,段云. 基于“一园多区”的物流园区规模规划与功能设计[J]. 商场现代化,2011(11):41-43.

[3] 刘想宁. 武汉东西湖保税物流园区规划布局研究[D]. 武汉:武汉理工大学物流工程学院(硕士学位论文),2006.

[4] 李素艳,张越,李开宾. 上海浦东空港物流园区规划研究[J]. 交通科技与经济,2006,8(6):38-40.

[5] 张俊杰. 物流园区规模定位与其对周边交通环境的要求和影响关系分析[D]. 上海: 同济大学交通运输工程学院(硕士学位论文),2007.

相关热门标签