公务员期刊网 论文中心 神经网络技术范文

神经网络技术全文(5篇)

神经网络技术

第1篇:神经网络技术范文

【关键词】人工神经网络 信息技术 发展趋势

人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的发展,人工神经网络技术得到了快速的发展阶段。

1人工神经网络技术

人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点——神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。

2人工神经网络技术应用分析

随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。

2.1生物信号的检测分析

目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。

2.2医学专家系统

传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。

2.3市场价格预测

在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。

2.4风险评价在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。

3人工神经网络技术未来发展

人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。

4结语

通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、通用模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。

参考文献

[1]周文婷,孟琪.运动员赛前心理调控的新策略——基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.

[2]张红兰.人工神经网络技术的应用现状分析[J].中国新通信,2014(02):76-76.

第2篇:神经网络技术范文

[关键词]神经网络技术;标普500指数;波动率;预测

波动率是对特定证券或市场指数的收益分散度的统计量度,可以通过使用证券或市场指数收益率之间的标准偏差或方差来衡量。通常,波动率越高,风险越高。用来计算波动率的传统方法包括Black-Scholes模型和GARCH族模型。这些传统方法难以捕捉金融市场时间序列数据等数据集的不连续性,非线性和高度复杂性。随着计算机科学的发展,人工神经网络等机器学习技术提供了足够的学习能力,更有可能捕捉到金融市场中复杂的非线性模型。该技术已经在金融预测研究中取得了一些成果。Baba和Kozaki(1992)开发了一个神经网络系统用于预测日本股市的价格,并将改进BP算法与随机优化方法相结合的混合算法用于神经网络参数的训练。

1建模

本文使用神经网络技术建立了一个可以预测标普500指数波动率的模型。考虑到较长时间的交易包含了更多的信息以及实证研究的需要,本文选取的样本范围从2005年1月到2016年12月。为了比较不同模型的预测精度,以均方误差(MSE)作为评价标准,即预测波动率与实际波动率之间的偏差平方的平均值。反向传播(BP)算法也称为误差反向传播算法,是人工神经网络中的监督学习算法。BP神经网络算法理论上可以近似于任何函数。其基本结构由非线性变元组成,具有较强的非线性映射能力。而且,网络层数、神经元数量、网络学习系数可根据具体情况进行设置,灵活性大。输入变量的选择是一个建模决策,可以大大影响网络性能。本文的变量选择思路如下:波动率有聚集现象,可以证明波动存在自相关,所以历史波动率可以作为输入变量来预测t+1的波动率。Boller-slev(2011)从几个宏观金融变量(市场波动率本身和市场的市盈率等)中发现了波动率风险溢价的显著影响。因此,市盈率将被用作预测t+1波动率的输入变量。Fama和French(1988)发现,股票价格的一个缓慢的均值回归的趋势往往会导致回报的负相关性。Darrat和Zhong(2003)根据顺序信息得到假设,发现了道琼斯指数中的股票交易量和波动率之间存在显著的关系。基于上述原因,2005年至2015年标普500指数的历史波动率(滞后项)、市盈率、30日均价、交易量和一些基本信息(包括日收益率和收盘价)被选择作为输入变量。从这些数据中学习训练之后,BP神经网络将用于预测2016年标普500指数的波动率。我们使用MATLAB来建立这个BP神经网络。将2736个样本随机分为3组:有70%的样本用于训练网络。这些样本在训练期间提交给网络。然后根据误差对神经网络进行调整以优化自身。有15%的样本用于验证并停止训练。有15%的样本用于测试,提供了训练期间和训练后的网络性能的独立测量。这种方法被称为交叉验证,这是一种模型验证技术,用于评估统计分析结果和模型的过拟合程度。对于网络的层数,很多学者做了理论研究。Lippmann(1987)提出具有两个隐层的神经网络可以解决任何形式的分类问题。之后,Hetcht-Nielsen(1989)从理论上证明,任何闭区间的连续函数都可以用一个带有隐含层的BP网络来逼近。该理论可以作为BP神经网络结构设计的基本原则。实际上,增加层数的目的是找到输入、输出变量之间的关系,以减少误差,提高学习的准确性;另外,层数增加使得网络结构更加复杂,从而增加了网络训练时间。因此,通常的做法是通过设置隐藏的神经元的数量来调整误差。隐藏层神经元的数量对解决问题有很大的影响。有些书籍和文章提供了选择神经网络结构的“经验法则”。例如,Blum(1992)提供的经验法则是隐藏层的大小应该在输入层和输出层之间。Berry和Linoff(1997)给出的另一个经验法则是,它不能超过输入层的两倍。王小川等人(2013)提出了以下公式来帮助选择隐藏神经元的数量:Nhid<Nin-1Nhid<Nin+N槡out+a(0<a<10)Nhid=log2Nin我们测试了具有不同数目隐藏层的神经网络,从3到10。样本内的测试结果表明,有4个神经元的神经网络具有最好的结果。而通过对样本外数据即2016年标普500指数波动率的验证可以发现,4神经元网络在MSE和R评估标准中优于其他模型,这进一步证实了本文的实验结果。

2预测结果分析

使用BP神经网络进行波动率预测得到的均方误差(MSE)为4.291E-5,远小于同期数据计算得到的隐含波动率和GARCH模型计算得到的波动率的均方误差。将其与已实现的波动率进行比较可以发现,即使市场出现一些突然的变化或冲击,神经网络的波动率仍然接近实现的波动率,这表明神经网络在t+1波动率预测方面具有优越性。但是,这项研究还有一些局限性可以进一步改进。首先,本研究的波动率预测是基于每日数据来预测t+1的波动率。神经网络模型在不同时期的波动率预测中是否存在优势还有待研究。其次,需要优化神经网络的输入变量。在这项研究中,选择市盈率、交易量、历史波动率、30天平均价格,收盘价格和每日收益率作为输入变量。事实上,还有很多其他的与市场波动有关的变量,比如投资者情绪,利率变化等,所以输入变量的优化可以提高神经网络的预测能力。最后,本研究的对象是2005年至2016年标普500指数的数据,因此,其他市场或其他时间的波动率还有待进一步研究。但可以预见,不同市场的情况会有很大的不同,甚至根本不同。如果标的资产流动性差或交易量过小,神经网络模型很难获得足够的数据进行训练。它的预测能力可能会被严重降低。

参考文献:

[1]Baba,N.andKozaki,M..Anintelligentforecastingsystemofstockpriceusingneuralnetworks[C].IEEE:InternationalJointConference,1992,1(6):371-377.

[2]Fama,E.F.andFrench,K.R..Permanentandtemporarycompo-nentsofstockprices[J].JournalofpoliticalEconomy,1998,96(2):246-273.

第3篇:神经网络技术范文

基神经于网络判别指标过滤方法的两级识别策略,具有物理意义清晰,定量、定性的特点。应用于结构的损伤诊断,可以有效解决结构不适定性、非线性带来的评估误差及精度问题。

1.1自适应神经网络(Auto2associateNeuralNetwork)

自适应神经网络方法基于无损伤结构在正常服役条件下的实测响应数据(某个动力特性参数、或多个动力特性参数)作为训练对象(人工神经网络的输入和输出数据X、Y),依次构造一个自相关的神经网络Net=T(X→Y)。训练完成后,循环迭代输入数据X进入已训练的神经网络Net,获得输出数据Yn。通过选取合适的残差判断函数,通过对比数据Y和网络输出数据Yn的差值向量,采用某种距离测度函数加以测量形成健康结构的判别指标Vi。当结构发生损伤,实测响应数据Xd被作为输入数据通过已经训练的神经网络Net,由输入数据Xd和输出数据Yd可以计算得到的新的判别指标Vd,并与Vi相比较计算差值构建损伤指标Di来判定损伤。当Di大于既定残差函数时,即判定结构已经发生损伤。

1.2概率神经网络(ProbabilisticNeuralNetwork,PNN)

自适应神经网络方法构建自相关网络Net,将实测响应信息迭代计算Di,可以定性判定是否存在损伤,在损伤确定的条件下,可通过概率神经网络PNN判定损伤的位置、类型。PNN是通过具有无参估计量的已知数据集的概率密度函数来实现贝叶斯决策,将其加在人工神经网络框架中,接着进行判别未知数据最大可能属于哪个已知数集,构建一个包含损伤类别θ1、θ2….θq…θn集合,基于p维试验向量X的贝叶斯决策d(X)为d(X)∈θq(hqlqfq(X))>hklkfk(X),k≠q

(1)hj———分类指标θj的先验概率。lj———与错误分类d(X)埸θj的相关损失。fj(X)———采用多变量高斯(Gauss)分布函数的概率密度函数:fq(X)∈1nq(2π)p/2σpnqi=1Σexp-(X-Xai)T(X-Xai)2σ222

(2)将该贝叶斯决策映射为一个人工神经网络构成一个概率神经网络,如图1所示。向量X{X1、X2、X3、X4…Xi}———输入层的输入参数。权重向量Wj和向量X的点积zj构成中间层的神经元,而相对与分类号q的决策层神经元输出为:fq(X)=nqj=1ΣZqj=nqj=1Σexp[(X•Wqj-1)/σ2]

(3)σ—高斯核标准差。在应用中,构建的损伤位置或类型假定有多种。以结构的自振频率变化率为例,输入向量X为P个自振频率变化率,将带有某种类型损伤(或混合模式损伤)的实测模态数据输入训练好的PNN,得出决策层(输出层)各个损伤形态在试验向量点对应的概率密度函数PDF的估计值,其中,最大PDF估计值对应的预设损伤集合中则得出损伤的位置及类型。

2应用及展望

美国Purdu大学的Venkatsubrmania和Chan第一次运用BP网络进行了工厂结构的损伤检测与诊断,其后的研究中,Kudva将神经网络两级识别策略运用于平板结构损伤诊断,提出了大型结构损伤检测的方法;杨英杰等开发了评估钢筋混凝土梁的神经网络系统;Worden等运用神经网络识别了一个20根构件组成的结构的损伤;Pandey用两级识别策略,基于三层神经网络对大桥桁架结构进行损伤评估。近年来,结构损伤诊断的研究取得了长足进展。上述基于神经网络的损伤诊断研究表明了在这个领域的研究成果,同时也揭示了尚未解决的问题。

(1)如何选取合适的网络形式及网络参数以及样本集的组成是神经网络两级识别策略应用的关键,研究有效的网络输入参数是一个新的内容;

(2)人工神经网络具备高度适应性,学习能力和容错能力,但其黑箱系统的特性决定了其硬件实施的复杂性,如何提高算法的实现效率亟待研究;

第4篇:神经网络技术范文

关键词:大数据;BP神经网络;食品安全;监管

近年来中国的食品行业运行状况得到了空前发展。2019年上半年,全国规模以上食品企业工业增加值保持稳定增长,其中农副食品加工业累计同比增长4.7%,食品制造业累计同比增长5.5%;全国规模以上食品工业企业营业收入39311.4亿元,同比增长5.0%;利润总额2710.1亿元,同比增长10.0%。在经济效益增长的同时,存在的食品安全问题也逐渐凸显,受到了公众的广泛关注,国家对于食品安全的监管也愈发深入[1]。中国对于食品安全问题的监管一直处于不断发展阶段,近几十年来从监管模式上也有了一定的革新和突破。但是在如今大数据时代背景下,食品信息数据越来越庞大,也越来越复杂,有必要顺应时代、结合新型技术对传统的食品安全监管模式进行优化[2]。对于由不同地区、机构采集到的食品信息数据,如何进行系统化的汇总和整理,并从数据中发现潜在的安全隐患问题,及时向公众预警已非常迫切。目前,在中国乳制品质量安全评价中已应用了BP神经网络评价模型,通过训练设置相应的参数,更客观地反映中国乳制品质量的实际情况[3]。而通过数据挖掘和神经网络对数据进行整理和分析,进一步实现信息共享,发挥计算机的高速运算能力和信息处理能力,对于食品安全的监管来说是一个新的突破。因此,文章拟对大数据环境下的食品安全监管问题进行分析,旨在为推进中国大数据食品安全监管模式的理论完善及实践应用提供依据。

1食品安全监管

1.1传统食品安全监管模式

目前对食品安全监管最确切的定义是一项国家政府等职能部门对食品生产、加工、流通企业的食品安全进行监督和管理的干预控制活动,包括对食品生产加工及流通环节的日常监管、食品质量安全市场准入制度的规范管理,以及对食品生产质量不达标等违法行为的查处[4]。随着时代的变迁,食品安全问题也在不断更新和演变,中国在食品安全的监管方面也经历了几个典型时期。由图1可知,中国的食品安全监管经历了从无到有、从单一部门到多部门再到单一部门的演变。20世纪90年代,中国进入了多部门同时监管食品安全的“九龙治水”时期,此时的监管模式较为混乱;2009—2013年,新增了国务院食品安全委员会,被称为“九加一”时期;2013—2018年,食品安全监管的主要机构确定为国家食品药品监督管理总局,与之前相比监管力度更强;2018年3月之后,市场监督管理局正式成立并由其负责食品安全的监管,消除了以往监管模式中各个环节存在壁垒的问题。虽然中国食品安全监管模式经过不断的完善,在一定程度上控制了中国食品安全事故的发生状况,但并未从根本上有效解决食品安全问题。尤其是在信息化的大数据时代,食品安全相关的社会主体数量大、分布广,食品安全信息碎片化,这也给传统的监管模式带来了巨大的困难。目前中国食品安全的监管主要依靠政府部门来完成,存在监管手段传统单一的问题,通常是采取人工监管和以罚代管的手段,并且人工监管成本高、监管效率低。

1.2大数据下的食品安全监管

当今社会的信息化水平越来越发达,随之而来的是各个领域的数据也呈指数式增长,各个社会个体也都有机会接触到海量的信息。但是信息不对称,导致大众对食品安全的相关信息越加关注。运用大数据实现对食品安全监管的优化是目前提高监管质量、解决民生问题的重要方向。其中最基本的是要从海量数据中筛选有效信息并进行整合,从而根据整体趋势预测问题,做到食品安全事故的“未发先预”[5]。美国政府作为全球范围内对食品安全监管力度最大的机构,在各个时期制定的食品监管政策也较为灵活,处于领域发展的引领地位。早在2009年,美国开发了商品召回查询系统,消费者可以通过网站查询到食品召回的实时信息,监管部门在检查过程中如果发现存在食品安全隐患,也会强制召回[6]。2014年,美国了基于美国食品药品监督管理局(FDA)数据共享平台的OpenFDA,该项目是使用以用户为中心的设计流程所创建的,实现了食品数据的公开和交换,并且能够根据数据发掘深层次的信息,有效遏制食品安全事故的发生[7]。由表1可知,与中国的传统监管模式相比,运用大数据进行食品安全监管存在非常明显的优势。总的来说,运用大数据进行监管,不仅能够确保每一个问题食品的追根溯源;同时也有利于监管部门通过大数据进行提前预警和精准监管。

2数据挖掘:食品安全风险的预警

2.1食品数据的采集与信息共享

在食品安全监管领域运用大数据相关技术,最核心的是通过数据挖掘的方法消除数据与知识之间的鸿沟,使数据以知识的形式体现。基于数据挖掘所得信息的有效性和前瞻性特点,可以根据以往的信息对未来可能的食品安全隐患时间进行预测,开展有效的预防管理措施。欧美一些发达国家在数据挖掘的运用方面较中国更加成熟,尤其是在食品数据的采集、整合与共享环节都非常规范和成熟。美国在2011年已构建了食品安全监管的网络体系,其下属的5个机构协同进行监管(见图2)。在食品安全数据方面,欧美以及日本等发达国家的开放程度较高,能够保证相关数据对成员单位及社会大众等持续开放。尤其是美国基于搜索的应用程序OpenFDA开发后,食品生产企业、公众、专家、媒体等社会各界都可以进行食品数据、检测报告的检索和使用。据统计[8],截止到2017年,在OpenFDA上注册的用户已高达13000多个。许多软件在开发时也尽可能与OpenFDA相链接,为用户提供全面、便捷的食品相关报告与检索服务。OpenFDA数据库的开放使公众更直接地参与食品监管活动中,在调动社会各界参与食品监管积极性的同时,也提升了全面监管的效率和质量。OpenFDA项目由开放的数据(原始数据下载)、开放的源代码(可检索的、开放的应用程序编程接口)和开放的社区(技术文档和应用实例的交流平台)3部分组成,最终的产品是形成第三方开发的手机软件。OpenFDA项目基于云平台技术,可自动实时数据更新;数据获取方式分为网页和应用程序编程接口2种。在建立数据共享平台的基础上,一方面FDA开发手机软件加强信息交流,进行有效的数据交换并探索公共网络数据的开发;另一方面,企业与研究机构利用FDA的开放数据,创造性地开发了数据的商业价值和研究价值。

2.2基于神经网络的数据挖掘方式

各食品监管部门的职能不同,因此建设了很多业务系统,使食品监管部门的监管效率大幅提升。但对于积累的大量类型多样的食品监管数据,只有很少一部分被开发利用。构建基于BP神经网络的食品安全预警模型,能够有效识别、记忆、预测食品安全监测得到的日常数据中的危险特征,这对于食品安全监管来说能够从源头规避危险因素。数据挖掘作为一种新型的技术,所挖掘到的信息具有前瞻性。传统的数据分析会忽视一些潜在信息,而通过数据挖掘技术能够透过事件的表象发现隐藏在背后的细节,从而找到潜藏的规律,以及看似无关事物之间背后的联系,用此来对未来的事件进行预测。数据挖掘作为一个发展平台,后续对机器学习的研究也为数据挖掘的发展提供了工具,二者之间的关系如图3所示。人工神经网络(ANN)是数据挖掘领域的一种重要工具,在一定程度上受到了生物神经网络的启发,是由一系列简单单元相互密集连接构成,网络中的每一个单元有一定数量的实值输入,并产生单一的实数值输出。神经网络能够有效地学习数据中的错误,通过大批次地训练寻找隐藏的潜在规律[9]。随着研究的不断深入和应用领域的不断扩大,人工神经网络已经发展至近10种[10]。ANN不需要有非常确切的输入与输出间的假设关系,并且网络内各单元的权值通过自身的训练即可得到。对于食品安全检测数据而言,检测指标较多,而人工神经网络在面对这样数据量大的情况时,随着训练集的增加,分类器也越准确。尤其是BP神经网络本身具有较高的容错性,自动修正误差的能力强,通过将食品信息数据输入BP神经网络中,进行数据运行、调整等一系列过程,实现对食品质量安全的评价。即便是面对食品信息采集过程中存在的数据不完整情况,BP神经网络也可以从现有的部分数据中学习潜在规律,并通过自身的权值调整进行规律学习,从而构造出健壮的模型。BP神经网络的学习过程包括向前计算和误差反向传播两个过程。向前计算时,从输入层开始对输入逐级计算,最终传向输出层;当输出层未得到预期输出时,则开始进行误差反向传播,逆向逐级对网络中各层的权值进行调整,到达输入层后再开始向前计算过程[11]。BP神经网络的两个过程反复进行,直至网络误差最小时完成整个学习过程。BP神经网络的经典结构如图4所示。在BP神经网络中,输入层的节点数由影响因素决定,文中讨论的是食品安全监管,因此输入的节点即为食品安全检测的所有指标,采用评价等级数值作为输出。隐含层节点数的确定依据“满足精度条件的同时使网络结构尽量紧凑,减小误差”。文中建立的3层BP神经网络,根据输入变量,选择双曲对数函数tansig为输入层与隐层间的传输函数,线性函数purelin为隐层与输出层间的传输函数,使用批量训练方法进行权值调整。实际应用中,将已有的食品检测数据作为输入,将其对应的食品安全风险系数作为输出,进一步训练BP神经网络完成函数的最优拟合,最终实现预测某类食品在之后多个监管周期内的风险系数,提前发出预警。

2.3中国食品安全监管的对策建议

在大数据监管的新体系下,中国传统的食品监管模式已无法适应日益复杂的食品链路环境,对于食品安全的监管也应与时俱进,结合大数据不断进行优化。借鉴国外的经验,中国在食品监管方面应充分利用新一代信息技术,实现智能化的监管流程。作为智能技术的研发者,首先应将数据挖掘技术的应用流程在相关部门进行说明,通过前期应用数据证实其在食品安全风险监管中的有效性。其次,对于实际应用效果进行实时统计分析,了解监管部门的政策及需求,不断对神经网络结构进行优化,以应对数据类型不断丰富的食品安全数据信息。(1)政府应当完善综合数据库的建设,将碎片化信息整合起来,实现各部门之间数据的整合与共享,最终形成一个大型数据库。在此过程中,政府可以发挥激励企业、流通方主动提交食品数据的职能,进而整合各个监管主体的信息。(2)监管部门应做到主动公开食品数据库的信息,为社会大众提供便捷的数据检索服务,促进食品安全监管的全民参与。也只有政府真正做到数据公开共享,才能推进数据的有效应用。此外,借鉴欧洲食品安全局(EFSA)利用数据制定了行业风险识别的经验,中国也需要充分运用大数据技术构建一套系统的食品安全事故风险识别系统,并及时通报相关安全隐患。总的来说,食品安全监管涉及生产、加工、流通、销售等一系列复杂的过程,利用大数据对海量的食品安全相关数据进行挖掘和分析,探究其中的规律,为科学有效地监管提供依据。通过与数据共享、云平台等信息技术相结合,对食品大数据进行创新化的规范整合,打造数据标准化。

3结论

第5篇:神经网络技术范文

关键词:神经网络;计算机安全;评价技术

近年来,计算机及其网络技术的快速发展给人们的生产、生活带来了极大便利,但同时也带来了相应的安全风险。在计算机网络运营过程中,能够影响其安全的因素众多,比如计算机软硬件损坏、病毒、黑客攻击、人为操作失误等。为了有效促进计算机及其网络技术的发展,应严格防范安全问题,通过建立科学、高效的网络安全评价系统,采取相对应的安全防范措施,不断优化与完善计算机网络体系,以便于其为人们提供更好的服务。

1神经网络及计算机网络安全的概述

1.1神经网络简介

神经网络又被称为链接模型,其是从生物神经网络得到启发而建立的。神经网络模拟了人脑的信息处理方式,然后通过建立数学模型研究大脑行为结构及神经元的基本特征。世界上第一个神经网络模型是由生物学家及数学家共同提出的。神经网络复杂多变,神经元通过大量节点相互连接成网络,并且每一个神经元都能够处理信息,因此,神经网络能够同时处理海量信息。计算机学家在神经网络模型的基础上进行优化,设计出了感知器神经网络模型,并将之应用到计算机网络、工程建设以及经营管理等多个领域。

1.2计算机网络安全

计算机网络安全主要是指在网络环境下,通过采用较为先进的科学技术及管理措施来保障计算机网络体系正常运营及资料安全。广义的计算机网络安全包括物理安全及逻辑安全两大部分,其中逻辑安全主要是指信息数据的完整性、保密性及可用性等方面的内容;物理安全则包括系统中的硬件及软件等内容。计算机网络安全具有较强的可控性及可审查性。目前,计算机网络安全问题已成为全球共同关注的问题,同时也是相关从业人员一直努力解决的一大重要问题。

1.3计算机网络安全评价体系的建立原则

计算机网络安全评价体系是评价工作的基础,其能够科学、全面、客观地分析与评定计算机网络中存在的不安全因素,并给出相应的指标及解决措施,因此,在评价体系建立过程中,应综合考虑多方面因素来设计评价指标。计算机网络安全评价体系的建立原则主要包括以下几个方面。(1)可行性。在安全评价体系建立之初,首先应确保构建的可行性,必须从实际条件和需求出发,因地、因需、因人制宜,以此来确保评价体系的实用性。(2)准确性。安全评价体系建立过程中,应当确保其能够体现出计算机网络安全的技术水平,并及时将各项安全信息反馈给检测人员,以便于技术人员及时进行安全维护。(3)完备性。建立安全评价体系,还应确保其能够全面反映计算机网络安全的基本特征,以便于提高评价的准确性、真实性。(4)简要性。安全评价体系的评价指标应具有代表性,以此来确保安全评价工作简单、明了。(5)独立性。由于计算机网络是一个较为复杂的系统,因此,在其安全评价过程中,应确保各项指标的独立性,尽量减少重复选择及指标之间的关联,以此来提升安全评价工作的效率和准确性。与此同时,在指标检测过程中,应尽量选择那些具有代表性和独立性的指标进行检测,以便于将计算机网络的运行状态和安全状况客观、真实地展现出来。在基于神经网络的计算机安全评价体系中,神经网络发挥着至关重要的作用,并且其较强的适应性为安全评价工作提供了强有力的保障,因此通过神经网络技术,能够创建出计算机网络安全评价模型及仿真模型,以此来有效评估计算机网络的安全状况。

2基于神经网络的计算机安全评价技术体系的建立

BP神经网络模型是当前使用最广泛的神经网络模型,其主要采用最速下降法进行反向传播,同时调整相关数值,从而将误差降到最低。BP神经网络模型还可以运用误差逆传播算法,构建起反馈多层网络。由于BP神经网络模型的算法简单,更易实现,且具有良好的非线性逼近能力,因此,其也是计算机安全评价系统常用的模型之一。本文主要以BP神经网络模型为基础,对计算机安全评价系统展开分析。

2.1基于神经网络的计算安全评价模型的设计

该模型主要由输入层、隐含层及输出层三大部分组成。(1)输入层。BP神经网络在设计过程中必须严格规定输入层神经元节点的数量,其应与安全评价体系的评价指标数量一致,因此,神经元节点的数量应由二级指标的数量确定。比如,安全平体系中设计了10个二级指标,那么输入层神经元节点的数量也应是10个。(2)隐含层。神经网络安全评价模型在设计中,应采用单向隐含层,但若隐含层节点数量过多,则会大大增加神经网络的学习时间,而若隐含层节点数量过少,又会降低神经网络的容错率,所以在设计过程中必须控制好隐含层的节点数量。(3)输出层。神经网络安全评价模型的输出层设计关系到网络安全评价结果,若在输出层评价设计时,将输出层节点设为2个,那么(1,1)的输出结果则表示十分安全,而(1,0)则表示基本安全,(0,1)则表示不太安全,(0,0)则表示非常不安全。

2.2基于神经网络的计算安全评价模型的学习

基于神经网络的计算机安全评价模型构建过程中,BP神经网络需要在模型中进行神经网络学习,这就表示其需要完成相应的训练工作,同时这也使得BP神经网络具备初始连接权利。由于经过了一系列的神经网络学习,所以后期使用中其误差值较小,这样才能确保安全评价结果的准确性,并保证模型使用与使用者的期望值无限接近。

2.3基于神经网络的计算机安全评价模型的验证

验证安全评价模型,是为了确保其设计与学习工作的良好性,更是为了确保安全评价模型具备全面性、实用性及准确性。验证程序主要为:首先,科学选取样本数据,然后将样本数据输进模型中,经过模型的检验与分析,从而对计算机网络的安全进行评价,如果所输出的结果与对比值一致,则表明安全评价模型具有较高的准确性,可以投入使用;如果所输出的结果与对比值存在较大的误差,这时还应查明误差原因,如果是模型的问题,还应对模型进行检验与优化,严重的还应重新设计,务必要确保其实用性和准确性。

3结语

综上所述,神经网络在计算机安全评价模型中具有至关重要的作用。因此,在构建基于神经网络的计算机安全评价模型时,应将神经网络的基本特征与计算机网络运行特点紧密结合起来,并综合考虑实际状况和需求,然后以网络安全评价模型构建的五大原则为基础,从模型设计、神经网络学习及模型验证等几大步骤着手,尽力创建出全面、高效、准确且实用性强的计算机网络安全评价模型,以便于为计算机网络安全运行提供有力的支撑。

参考文献

[1]李忠武,陈丽清.计算机网络安全评价中神经网络的应用研究[J].现代电子技术,2014(10).

[2]吕树红,陈康.模糊综合评判在网络安全评价中的研究与应用[J].计算机光盘软件与应用,2013(22).

[3]陶跃,田迎华.多级可拓评价方法在网络安全评价中的应用[J].吉林大学学报:信息科学版,2013(1).

[4]孙志娟,赵京,戴京涛.采用KPCA-BP神经网络的并联机构全局综合性能评价方法研究[J].现代制造工程,2014(11).

[5]禹建丽,黄鸿琦.神经网络在复杂自相关预测过程中的应用及对比研究[J].数学的实践与认识,2016(19).

相关热门标签