公务员期刊网 论文中心 化学制药技术范文

化学制药技术全文(5篇)

化学制药技术

第1篇:化学制药技术范文

【关键词】桑树病虫害;非化学;农药;防治技术

喜温暖湿润气候,稍耐荫。气温12℃以上开始萌芽,生长适宜温度25-30℃,超过40℃则受到抑制,降到12℃以下则停止生长,耐旱,不耐涝,耐瘠薄,对土壤的适应性强。结合山东省的气候环境、降水以及土壤都非常适合桑树的种植,但是在桑树的生长过程中由于生长环境发生改变导致桑树出现疾病,影响桑叶的生长,为了防治病虫害,桑农通常会采用化学农药进行喷洒、涂抹等形式来解决病虫害,化学农药虽然能够有效的减少的病虫害的发生,但是用药不当会造成桑树发生药害,为了防止这种状况的出现,使用非化学农药对桑树进行病虫害防治,提高桑树产量成为了重要的桑树种植模式。

1化学农药在使用时出现的问题

长期大量使用化学农药防治病虫害易产生药害,尤其长期施用一种药物能使病、虫产生抗药性,同时,长期使用化学农药防治病虫害易污染环境,杀伤天敌,降低农田生物多样性;另外,大量使用化学农药防治病虫害,容易导致农药残留,引起安全方面的问题。在传统防治病虫害的过程中,农户通常会使用农药去减少病虫害如,在出现桑黄化型萎缩病时农户就会使用敌敌畏与辛硫磷进行喷洒,但是在喷洒的过程中用量不当就会导致桑叶烧毁,产量下降或者是农药大量残留在桑叶上会对蚕宝宝造成危害。同时,因农药使用不当引起的快速中毒,还有对于江河湖海及地下水资源的污染[1]。

2新型桑树病虫害防治方法

在当前的种植桑树模式下,大量使用人工进行害虫捕捉,进行农药喷洒的方法已经不能适应当前的发展需求了,我们需要采用新的方法不仅能够减少病虫害还能够提高桑叶的产量,为桑户提高经济收益。随着科学技术水平的不断提高,农户科学种植的思想也显现出来,所以在这种形式我们提出了以生态治理和物理治疗的两种方法。

2.1桑树生态治理模式

这种生态治理模式指的是一种在农业生产实践中形成的兼顾农业的经济效益、社会效益和生态效益,结构和功能优化了的农业生态系统,根据生态学的组织层次,生态系统循环模式和生物多样性利用模式,最重要的就是平衡农业生产、生活、生态功能的整体布局。通过这种生态治理模式实现绿色健康环保的种植,利用天敌减少桑树病虫的数量。如,桑树经常会遇到的一种虫,华北蝼蛄其主要的特征在于能够危害多种植物和树木的根部,华北蝼蛄对桑树的生长会造成严重的损伤,若虫和成虫会通过对桑树嫩茎和幼苗根的啃咬而导致苗根断开,引发幼苗的死亡,华北蝼蛄的危害主要集中在秋季和春季两个季节,具有喜雨、喜水的特征,因此在灌溉后或者雨后危害会进一步加剧。而华北蝼蛄的天敌是鸟类,因此只要农户在桑树苗圃附近通栽种少量的防风林,就可以吸引华北蝼蛄的天敌,如食虫鸟、红尾伯劳、黑枕黄等,通过这种生态治理模式减少病虫害[2]。

2.2综合治理科学施肥

桑树容易产生真菌病害,也就是“褐斑病”这种病症的出现主要危害的是桑叶,发病周期较长,在桑叶生长的周期之内都可能产生“褐斑病”并且这种病的危害率极高能够感染叶片的50%以上,这种病症一旦出现就会导致桑叶的产量大幅下降,给桑户造成大量的经济损失。所以当这种病症出现时,需要使用有机肥料,并且要平衡施肥,不要因为施肥过量或者施肥量较少而出现“褐斑病”,有机肥的组成通常是充分发酵之后的农家肥与氮磷钾肥复合组成的,并且在每年的秋冬季节都要把坏掉的树枝剪掉,降低桑树发病率。

2.3结合虫害情况进行物理防治

桑树金龟子也是桑树常见的一种病虫害,金龟子主要啃食春季桑树新芽、嫩芽,大大影响了桑叶的生长,桑树金龟子的种类很多,为害桑树的主要有黑绒金龟子、褐金龟子、铜绿金龟子等。成虫啮食桑芽、嫩梢及桑叶,对苗木嫩芽为害尤重。北方黑绒金龟子发生普遍,江苏、浙江一带以褐金龟子和铜绿金龟子为主。黑绒金龟子一年繁殖1代,以成虫越冬,在北方4月上旬出现,为害桑叶有2个高峰期,分别是4月末及5月底至6月初。每天18:00~20:00为害最盛。5月初交配后产卵于土中,直至7月上旬。褐金龟子在江苏、浙江一年繁殖l代,在北方则两年繁殖l代,为害时间每天20:00~2l:00时最盛。铜绿金龟子一年繁殖1代,以幼虫在土中越冬,在闷热无风的黑夜活动最盛。根据桑树金龟子的生长习性,我们可以利用金龟子的假死性,当黄昏成虫交尾取食时,打落捕杀,也可以黑光灯诱杀成虫,同时也可以在冬耕翻土时,随犁楝除幼虫和幼苗根部的蛴螬,通过这种方式方法减少病虫,保护桑叶的生长。

3桑树病虫害的防治要求

很多农户在种植桑树的过程中都出现了只治不防的情况,由于桑树在种植的过程中出现的问题较多,并且桑树病虫害的防治是一项极具复杂的工作,所以才回到治化学农药的大量使用,但是农药的使用也会对桑叶造成影响,为了使桑叶的产量能够提高,保障桑户的经济效益,所以当地相关农业部门要积极行动起来,完善相关的服务措施,引导农户进行科学的病虫害防治,减少化学农药的使用,减少污染。当地农业部门相关技术人员要努力提高自己的知识水平;并且能够结合具体情况给农户提出相关的专业意见,深入桑树园进行实地考察,研究帮助农户解决病虫害问题,并且加强科学引导,定期组织农户进行技术培训。鼓励农户加强对桑园的管理,要及时进行施肥、浇水、除草等,使桑园的种植环境适合桑树生长,减少病虫害的产生[3]。

4结束语

结合本文提到的两种新的病虫害防治方法,农户在进行桑树种植的过程中就可以大大减少因为化学农药而造成的不必要损失,通过生态防治与物理技术防治的方法在一定程度上形成了绿色健康的种植模式,有利于桑园的可持续发展。同时在进行病虫害防治的过程中也要加强对病虫害进行提前预防,加强对桑园的管理、监测,通过这种预防可以有效减少病虫害的发生几率,大大减少人为原因而导致的病虫害。

参考文献

[1]贝建设.桑树病虫害非化学农药防治技术[J].农业与技术,2018(13).

[2]李运军,顾海洋,孟令春.对桑树病虫害防治存在问题及对策的思考[J].农业开发与装备(7期):158-158.

第2篇:化学制药技术范文

关键词:红外光谱;分析技术;药品生产;化学生产;控制作用;研究分析

众所周知,药品对于国内的广大人民群众来说是非常重要的,并且根据国内相关的民生新闻来看,近几年国内的药品质量相关的事件发生概率仍然是比较高的,这一类事件的发生轻则使得人民群众产生了一定程度上经济的损失,重则使得人民群众的人身安全受到了严重的威胁,因此,现阶段提升化学药品生产质量已经是迫在眉睫的了。所以,在接下来的文章中就将对近红外光谱分析技术在化学药品生产过程控制应用进行详尽的阐述,并且试图提出一定的具有建设性的意见或者对策,以使得化学药品的质量、生产效率都有一定程度的提升。

一、近红外光谱分析技术的涵义以及其特点

(一)近红外光谱分析技术的涵义所谓的近红外光谱分析技术,其中使用的是一种比较特殊的电磁辐射波,这一辐射波介于可见光与中红外之间,这也是其名称的由来。根据相关的调查结果不难得知,美国的材料检测协会这一组织将近红外光谱分析技术的电磁辐射波定义在780nm-2526nm之间[1],这也是人类在研究过程中发现的首个非可见的光区,对于后续的研究事业的发展也是非常重要的。在药品的生产过程中采用这一技术能够实现在线分析,从而能够非常快速的得到检测的结果,以此实现药品生产过程中的控制作用,进而使得药物的生产质量实现上升。

(二)近红外光谱分析技术的特点一般来说,常规的药物分析技术只能特定地分析某一种药物成分的含量数据,但是近红外光谱分析技术能够实现对药物生产过程中的多种成分的检测,这使得工作时间得到了节省,同时工作效率能够得到非常巨大的提升,省出来的人力物力以及财力能够购置相关的制药设备,这对于国内制药厂的工作来说是非常巨大的一种提升,可以说这一技术的应用使得制药厂的工作得到了极大的改善[2]。其次,这一技术的应用成本相对来说比较低,因为近红外光谱分析技术能够在光纤上进行使用,进而使得技术应用成本得到了降低。并且在进行应用之后,就能够节省非常多的人力资源,因为这一技术可以实现多条生产线路的样品质量检测工作。另外,近红外光谱分析技术的污染也是比较低的,这一技术的应用符合我国可持续发展的标准。传统药品生产过程的检验工作往往会使用到非常多的化学试剂,进而就会产生了非常多的化学废水,这些废水对于环境的污染情况是非常严重的。而这一技术主要利用的是近红外光,不需要使用繁多的化学试剂,因此对于环境能够形成保护的效果。

二、近红外光谱分析技术在化学药品生产过程中的控制应用

(一)用于药品原材料的评价近红外光谱分析技术可以用于药品原材料的评价工作,在实际的应用过程中,相关的工作人员需要通过光纤纤维使得分析设备与感应器互相连接,这样就能够对药品生产的原材料进行分析工作。也就是说,通过这一技术的使用,能够使得制药单位对于生产的原材料具有足够的了解,进而保证了原材料的质量。而且,在发现原材料出现问题之后就能够第一时间进行解决,由此,药品的质量就能够得到非常巨大的提升了[3]。

(二)用于药物与混合物的检测工作在前文已经进行了一定的提及,传统的药品生产过程中的检测技术往往只能对某一种特定的成分进行检测,这使得药物和混合物的检测工作会消耗大量的时间,而近红外光谱分析技术能够实现在线的多种药物成分的检测,进而能够完成药物与混合物的检测工作。而且药物本身就具有非常多的成分,药物与混合物的检测工作如果能够进行的话,就能够实现对药品生产过程中质量上的控制[4]。例如,在实际的检测工作当中,工作人员可以将光纤探头直接放置在样品当中进行检测工作,这是非常方便且快捷的。

(三)用于浓缩干燥的环节固定的药品在整体的药品类型中占据了非常大的比例,在此类药品的生产过程中,浓缩干燥这一环节是非常重要的,近红外光谱分析技术能够对样品进行湿化学分析,相关工作人员通过这一技术往往能够了解样品是否符合标准,而且通过这种方式进行浓缩干燥的话,药品的质量往往会具有比较显著的提升。而且其中出现了相关的生产问题之后也能够第一时间进行处理。综上所述,对于近红外光谱分析技术在化学药品生产过程控制应用的相关研究和分析了,从文中叙述的内容中也不难看出,近红外光谱分析技术在制造过程中进行应用之后,这项技术的特性能够在生产过程中体现出来,例如生产效率提升等等,而且这些特点正是现如今的药品生产过程中所需要的。因此,这项技术在应用的过程中,相关的工作人员应该做好完善和优化的工作,这对于现阶段的化学药品的生产是非常重要的。

参考文献:

[1]贾燕花.近红外光谱分析技术在化学药品生产过程控制应用初探[D]北京协和医学院;中国医学科学院;清华大学医学部;北京协和医学院(中国医学科学院),2011.

[2]李军.近红外光谱分析技术在化学药品生产过程控制应用分析[J]中国化工贸易,2018,10(33):141.

[3]李沙沙,赵云丽,陆峰等.近红外光谱分析技术用于硫酸羟氯喹原辅料混合均匀度在线定量监测[J]第二军医大学学报,2019,40(9):995-1000.

第3篇:化学制药技术范文

1化学制药行业循环经济的概念

循环经济最早在20世纪60年代由Kenneth提出,他认为循环经济是指在人、自然资源和科学技术的大系统内,在资源投入、企业生产、产品消费及其废弃的全过程中,把传统的依赖资源消耗的线性增长经济,转变为依靠生态型资源循环来发展的经济。《中华人民共和国循环经济促进法》明确了循环经济减量化(reduce)、再利用(reuse)、资源化(recycle)这3个基本原则,将传统发展中“资源-产品-污染排放”的线性模式转变为“资源-产品-再生资源”的循环模式。基于循环经济的概念,结合化学制药行业的实践情况,本文认为,化学制药行业循环经济是以循环经济理念和发展模式为基础,旨在提高资源投入与药品产出比,在药物生产过程的各个环节中推行清洁生产,减少污染排放、提高资源再利用率,提升医药产业总体技术水平,在行业中产生规模效应,促进物质与能量在化学制药行业内部循环流动,减少行业对社会造成的环境压力,将化学制药行业的发展与生态保护有机地结合起来。

2循环经济对化学制药行业的积极意义

2.1减少原料使用量,提高原料利用率

循环经济提倡“循环发展”、“清洁能源”的理念,通过“资源-再生资源”的发展模式,减少毒害物的排放、促进清洁生产和生产工艺升级。从原材料的选择来说,循环经济提倡采用无毒无害原料代替有毒有害原料、提高原料品位和纯度;从能源选择角度来说,循环经济倡导使用清洁能源和可再生能源代替传统能源,常规能源清洁利用;从生产工艺来说,提倡高效节能降耗减污的工艺与设备,优化或采用全新的工艺流程。

2.2减少污染排放量,提高废弃物利用率

循环经济通过提高废弃物循环利用率来减少化学制药企业三废排放量,减少对环境的污染。就化学制药废液来说,其中含有菌丝体、未利用完的培养基、无机盐、有机溶剂及部分目标产品,COD含量高,平均超标50~250倍。如果直接排放会对环境造成严重污染,严重威胁人民群众生命健康安全。循环经济要求化学制药废水要经过处理才能排放,并且要最大程度地利用废水资源,如通过厌氧生物(水解产酸菌、产氢产乙酸菌、产甲烷菌这3大细菌联合)处理,最终可以得到作为能源的甲烷和水资源。

2.3推动产业集群发展,提升产业链价值

循环经济通过对现有资源整合,能够促进产业集群发展,将互惠或互补的企业群聚产生规模效应,形成以化学制药为主导产业并融合辅助产业和附属产业的产业集群,产生双赢或多赢局面。以石家庄医药产业集群为例,它以石药集团和神威药业为核心,形成了包括化学原料药及制剂、医疗器械、生物制药、医药批发、零售、流通在内的医药产业集群,囊括产业链的各个方面,促进物质、信息、能量在行业内部流动,提升产业链价值。

3化学制药行业循环经济发展模式

循环经济发源于20世纪60年代,在多年的发展中已经形成了美国杜邦化学公司模式、丹麦卡伦堡生态工业园等多种成功的循环经济发展范式。循环经济在20世纪90年代后期引入我国,在农业、钢铁、水泥、煤炭等多个行业都有完善的发展模式,并取得良好的经济效益与社会效益。因此,本文将“循环经济”理念引入医药行业,提出科学合理的化学制药行业循环经济发展模式,为绿色医药工业提供一条科学、协调和可持续发展的道路(图1)。此模式实现了物质和能量的传递,从原料药加工、药物生产、废弃物处理到药品流通按照产业链传递,实现纵向偶和循环,模式中除了化学制药这一主导产业,还融合了电力、化工等辅助行业、附属行业,实现了平行产业间的横向耦合循环。在化学制药行业循环经济系统中,以化学药物制造企业、洗煤发电厂、废弃物处理厂等主体为“点”,各主体间资源要素流动行为为“线”,紧密构建出科学合理的循环运行网络。

3.1输入系统

输入系统由资源输入和能源输入两条输入链组成,实体主要是发电厂和原料供应商。本模式将输入系统纳入循环系统中是为了着重强调循环经济并非简单的“末端治理”,其理论中的“减量化”、“资源化”原则要将清洁生产渗透到化学制药产业的各个方面。在原材料选择上,要采用无毒无害原料,淘汰传统工艺中毒性高、污染大、副产物多的原料。输入能源选择用清洁能源如风能、太阳能、水力发电代替传统的低效易耗能源。

3.2化学制药企业体系

化学药品生产企业是指生产化学药品的专营企业或者兼营企业。化学药品制造企业可大致分为两大类:化学药品原药制造企业和化学药品制剂制造企业。化学药品原药制造是指供进一步加工药品制剂所需的原料药生产,主要包括制药用化学物质的制造,如抗菌素、内分泌产品、基本维生素、磺胺类药物、水杨酸盐和水杨酸酯、葡萄糖和生物碱等原料药,还包括化学纯糖等。化学药品制剂制造是指直接用于人体疾病防治、诊断的化学药品制剂的制造,化学药品制剂制造可分为片剂、针剂、胶囊、软膏、粉剂、溶剂等各种剂型的产品,还包括放射性药物。化学制药企业体系内部存在物质流动,尤其是药品生产过程中副产物的循环或交换利用,力争使每一环节的副产物能够作为本工序原料重复使用,或者交由其他化学制药企业,作为生产所用原材料。

3.3输出系统

输出系统是包括药品经销商、药品批发商和药品零售商在内的化学制药产业链下游销售体系。主要是针对药品废弃包装和过期药品的回收处理。化学药品包装容器和过期药品已被明确列入我国2008年实施的《国家危险废物名录》和《医疗废物管理条例》。过期药品药效降低、毒性增加,随意丢弃或当做生活垃圾处理会对环境造成严重污染。废弃的药品包装和过期药品经过回收机构(由政府部门设立并监管)进行初步分类之后,由回收机构移交化工厂,进一步加工后形成原料输送入化学制药企业体系以供循环使用。

3.4废水处理系统

化学制药企业排放废水主要包括高浓度废水、低浓度废水、酸性废水、难消化废水这4种。废水COD、BOD含量高,存在生物毒性物质,成分复杂,未达法律规定的排放标准。废水处理系统以废水处理厂为核心,将化学制药企业排放废水分类引入废水处理厂,在其中经过不同工段预处理,再通过厌氧生物和好氧生物处理,生成并收集沼气存放于沼气池中以备能源供应。处理废水从处理厂进入回用水处理系统,达到化学制药用水标准的水循环进入化学制药企业体系,剩余水资源可直接排放进入自然环境。

3.5废气处理系统

废气处理厂是指将工厂产生的废气在对外排放前进行预处理,以达到国家废气对外排放标准的场所。化学制药企业产生的废气大多都是有毒有害的,大致可分为发酵尾气、溶剂气体和恶臭气体,这些废气必须经废气处理厂进行吸收处理。目前常用的处理方法有吸附法、吸收法、冷凝法等。冷凝法中的冷凝水是由废水处理系统提供的循环水,这就构成了废水处理系统和废气处理系统之间的联系。经过处理的废气,具有生产价值并且纯度较高的可以直接用于化学制药企业的再生产或者用于发电供能;需要经过处理再利用的输入化工厂;暂时没有去处的气体可以在储气池中分类贮存,待企业再生产时调用,实现气体重复利用和最小化排放。

3.6废渣处理系统

化学制药企业废渣中含有大量蒸馏残渣、失活催化剂、胶体残渣、反应残渣、不合格中间体和产品等来自制药企业生产每一环节的废弃物。污染物种类多、数量大、毒性大,影响生态环境,危害人类健康。因此,引入化工厂是循环经济模式持久运行的有力保障。本模式中的化工厂是从事化学工业生产和开发的企业和单位的总称。化学制药废渣在化工厂中经过分离,进入不同的工段进行反应后提纯,一部分反应物又成为制药原料或原料药进入输入系统循环利用,另一部分无毒、无害的废弃物可直接排放进入自然环境。在化工厂内,废渣经焚烧处理产生大量热能,带动发电机发电,为循环经济模式提供重要能源。

4促进化学制药行业循环经济发展模式合理运行的对策建议

4.1加强政府对化学制药行业循环经济模式的宣传和引导

目前,我国还未形成成熟的化学制药循环经济模式。究其原因,一方面是建立该模式前期投入巨大;另一方面是管理水平落后,未能达到模式建立标准,难以多方统筹,使模式健康运转。为了解决上述问题,需要政府部门从政策上积极引导化学制药循环模式的开展。从小循环角度来说,应继续加强对单个企业三废排放量的监管审查,鼓励清洁生产;从中循环角度来说,应推动化学制药循环工业园区的建立,合理规划公共服务系统,为公共工程的一体化供应创造条件,加强区域循环的物质流互通;从大循环角度来说,应在全社会范围内为化学制药循环模式建立信息交换平台,促进医药企业信息之间的交流,使副产物以及三废能够最大化利用,同时发展线下物流网络,保证线上与线下物质流和信息流同步。

4.2加强医药行业协会的监督作用

我国的医药行业协会是非政府、非企业的民间社会团体,主要对我国医药企业起到信息咨询、融资支持以及与政府的协调沟通作用。医药行业协会在政府与企业、企业与企业之间有着桥梁和纽带的重要作用。医药行业协会作为医药行业内部的信息交流平台,能对化学制药行业循环经济发展模式的建立起到促进作用,对运行起到监督作用。建立化学制药企业循环经济执行榜单,对积极参与发展模式的企业加以公示,并向相关部门汇报,对该企业进行奖励;对于污染排放量大并不加以整治的企业,通知相关部门并责令其进行整改。

4.3加强高校与科研机构对化学制药循环经济模式的技术支持

我国化学制药企业创新能力弱,着眼于社会责任保护环境而提升工艺流程、研究清洁能源的企业更是凤毛麟角。循环经济模式3R原则要求从源头减少原料使用,提高资源利用率,达到节能减排的目的,这就需要各大高校与研究院所的技术支持,为化学制药循环经济模式提供新能源、新原料、新工艺,促进传统产业升级更新。除了技术支持,化学制药循环经济模式还需要“软件”支持,为了保障模式正常运转,高校与研究院所要为其提供具有专业素质的管理人才;开发适用于循环模式的管理信息系统,简化管理方式,使循环经济模式精确高效运行;为化学制药循环经济模式提供合理的规划布局,达到整个产业的高效、集约、节能、减排目的。

4.4提高化学制药企业的诚信自律

第4篇:化学制药技术范文

化学制药工艺学涉及化学制药生产中工艺路线的设计、选择,工艺条件的研究与优化,工艺改进,中试放大及“三废”防治等方面,可以说是涵盖了整个药物从研发到生产的全过程。在这些过程中不可避免要涉及易燃、易爆、有毒、腐蚀等危险化学品,在使用、废弃处置或存储等过程中极易发生事故。教师可以充分利用课堂教学给学生传授相关的自我防护知识,使学生在理论层面上认识到哪些试剂有剧毒,哪些溶剂是避免使用的,哪些试剂或反应容易发生爆炸,高温高压反应如何操作等,从而提高学生的安全意识,减少事故的发生。

1.1从工艺路线的设计、选择入手

一种化学药物往往有多条合成路线,但是需要确定一条经济而有效的合成路线作为药物的生产工艺路线。教师在讲述工艺路线的设计选择时,不仅要培养学生的经济意识,而且更要注重培养学生的安全意识和环保意识。要让学生真正认识到设计选择工艺路线不仅仅考虑的是哪条路线能够使经济效益最大化,更需要考虑的是哪条路线更能消除或减少危险物质的使用量,更能保证操作人员的人身安全和减少对环境的污染,要尽量防止采用不安全的合成路线。如讲扑热息痛工艺路线的设计选择时,教师可以引导学生对每条合成路线的优缺点逐一分析,从而引出目前国内外广泛采用的合成路线,让学生以安全、环保的观点认识那些毒性大、危险性高、污染严重的老工艺路线为何被淘汰。

1.2从工艺条件的选择和优化入手

工艺条件的选择和优化包含的内容非常多,可以说是整个教学内容的主要部分。教材上较少涉及安全方面的知识,教师在讲授这些反应条件和影响因素时,可以适当补充一些安全知识。如讲到溶剂这一影响因素时,教师可以联系苹果公司的正己烷中毒事件,先让学生认识到暴露于有机溶剂的危害性,再进一步让学生熟悉哪些是避免使用的溶剂,哪些是限制使用的溶剂,哪些是合理使用的溶剂,从而提高学生的自我防护意识。再如讲到温度这一影响因素时,结合生产上的一些安全事故,比如常见的硝化反应、氯化反应的燃烧爆炸问题,要启发并告诉学生如果出现冷却效果变差、升温过快或中途搅拌停止等异常情况时该如何处理。如立即停止或减少反应物的进料量,给反应器通入低温介质,温度降低后再恢复搅拌等,这样就可以使学生有一定的理论知识,以后万一遇到这种失控反应时不至于不知所措,而能果断采取措施,把事故消灭在萌芽状态或防止事故扩大而带来不必要的人身伤害和财产损失。

1.3从中试放大入手

中试放大是从实验室过渡到工业生产必不可少的重要环节,是两者之间的桥梁。中试放大的试验规模和设备等外部条件不同于小试,那么发生危险的严重性也比小试大得多。教师在讲授这一部分内容的时候,不妨用多媒体播放一些社会上影响较大的制药厂事故图片或视频,分析事故出现的原因,以引起学生的注意,强化安全意识,避免悲剧的上演。对一些危害性较大的反应,如高压反应,若反应釜出现温度、压力失控的情况时,告诉学生应该怎么做:应立即关闭所有物料、蒸汽(或热水)进口阀,迅速开启防空阀、冷却水系统,观察温度压力变化情况,如温度压力仍不能控制,可以开启放料阀并通知所有岗位人员立即撤离到安全区域。

二、实验教学过程中的安全教育

化学制药工艺研究是建立在实验基础上的应用研究,实验是化学制药工艺教学中相当重要的环节。笔者在以往的实验教学中发现,部分学生在实验过程中比较盲目,做完一步操作之后不知道下一步操作要做什么;部分学生(尤其是女生)害怕实验有危险,或者担心有毒试剂会影响身体健康,心有恐惧不愿动手做实验,有些甚至不敢进实验室。针对这些情况,教师非常有必要对学生进行实验的安全教育。

2.1实验操作前的教育

尽管学生在基础化学实验课上受过实验室的安全教育,但是本着“安全第一”的理念,教师在开展化学制药工艺学的实验之前,要再系统的给学生进行一次实验室安全技术讲座,加深学生的实验室安全意识。内容包括常见的电、水、气、火、化学药品使用、废液处理、废料处理、事故应急处理等。例如出现火情时,要早发现、早处理、早报告。学会使用灭火器,易燃物质着火时可用干粉灭火器灭火;电线或电器着火时,应先断电,再用干粉灭火器灭火;衣服着火时,应尽快脱掉衣服,并用水灭火,或就地滚动,切忌外跑。

2.2实验过程中的教育

化学制药工艺学的实验主要是在实验室中进行的,也有一些是在工厂或专门的中试车间进行的。在实验室的实验过程中,教师要指导学生正确使用仪器设备,对于不规范或危险的操作要及时发现并予以纠正,例如在蒸馏操作中要严防造成密闭体系,在使用乙醚之前要检验有无过氧化物的生成等。教师要严格检查学生是否预习过实验,学生实验前是否已明确所用药品的性质和操作中应采取的防护措施,培养学生良好的实验习惯。在带领学生参观工厂或中试车间时,可以请工厂的工程师给学生介绍各种设备的使用方法以及使用时的注意事项和万一出现危险时应如何应对的方法。例如在参观氢化室时,教师或工程师要给学生强调进行催化加氢时必须是双人操作,禁止单人作业;催化剂在使用完后一定要及时交给氢化室的管理员处理,切记不能乱扔。当然,笔者在教学中发现,学生在了解制药行业存在这么多的危险后,部分学生往往会表现出对所学专业有一定的心理障碍,觉得学习制药专业很恐怖。针对这种情况,教师要及时加以引导,要让学生认识到其实有很多风险都可以通过安全操作来降到最低,只有提高自身的安全文化素质才是预防事故发生的最根本措施。

三、结语

第5篇:化学制药技术范文

关键词:生物制药;废水;处理技术;应用探讨

现阶段,随着生态环保可持续发展理念的提出,对于各行各业的发展提出了新要求。生物制药厂快速发展的背景下,所引发的废水污染问题引发了社会各界的高度关注,生物制药厂废水中含有诸多的有害物质,如果这些污水不经处理随意排放,将会造成严重的污染,甚至会导致疾病的传播,因此要高度重视。

一、生物制药废水概述

近年来,由于受到诸多因素的影响,疾病呈现出高发趋势,对于治疗药物、保健药物、疫苗的需求量越来越大,这极大地推动着生物制药企业的发展,但同时也产生了越来越多的废水,这些废水属于高浓度有机废水,处理难度高。据相关统计数据资料显示,当前我国生物制药企业有近5000多家,产品种类多,工艺差别较大。生物制药厂生产运转中所产生的废水,含有高浓度的有机污染物,并且种类非常多,水质水量变化大。如果没有进行处理肆意排放,将会引发严重的污染问题。在此情形下,如何实现对生物制药企业废水的有效处理成为一项重要工作。

(一)生物制药特点通过实际调查分析我们发现,当前生物制药企业在广东、山东以及山西的分布较为广泛。近年来随着产业结构调整的不断加快,相关政策的出台实施,越来越多的生物制药企业成立。由于生物制药行业发展时间较短,生产集中度不高,再加上缺乏创新意识,这极大地阻碍着生物制药领域的发展。按照生产工艺的不同,可以分为两类,一类是生物制药,指的是提炼植物等有机原料进行制药,另一类则是化学制药,指的是依靠化学反应所制成的药物。两者相比较而言,化学制药过程中需要应用更多的辅料,因而也就会产生更多的废水。

(二)生物制药废水特点在制药过程中,生产工艺是影响废水差异性的重要因素。生物制药生产工艺复杂多样,因而在生产中所排放出的废水污染性极强,会严重污染水源及周自然生态环境。生物制药厂废水主要包括废滤液、溶剂回收残液、废母液,这些废水均含有高浓度的污染物,酸碱性和水温变化大,废水处理难度高。

二、生物制药废水处理技术分析

为降低生物制药废水对于水源及自然生态环境所造成的污染,要积极做好废水处理工作。现阶段,生物制药废水处理过程中,常用的处理技术主要包括以下几种:

(一)生物处理技术现阶段,生物制药厂在废水处理中,生物处理技术是常用技术之一,能够有效地将有机物污染物消除掉,同时该技术应用具备良好的经济性。生物技术技术又包含着多种技术,每一种技术均具备了不同的特点和优势,具体如下:1.好氧生物处理技术众所周知,生物制药厂废水主要以高浓度有机废水为主,采用好氧生物处理技术进行废水处理,需要在有氧环境下方可进行生物代谢,经过生化反应,逐级释放能量,进而实现对有机物的降解,该技术属于稳定且无害的处理技术。好样生物处理技术,涵盖着多种技术,常用的有生物膜法、生物接触氧化法、活性污泥法以及加压生化法等。2.厌氧生物处理技术厌氧生物处理技术在生物制药厂高浓度有机废水处理中的应用非常广泛,但是需要指出的是,单独应用厌氧生物处理技术处理后的废水,仍有较高的COD,因此需要配合好氧生物处理技术进行后处理。在应用厌氧生物处理技术的过程中,需要借助高效厌氧反应器方可进行,例如,复合式厌氧反应器以及上流式厌氧污泥床反应器等,方可达到良好的废水处理效果。3.厌氧-好氧组合处理好氧生物处理技术和厌氧生物处理技术,两者之间有着不同的优势及劣势。应用厌氧处理技术能够实现对高浓度、高负荷有机废水的处理并回收,降低运行耗能,但是整个过程的操作及管理存在较高的难度和复杂性,出水COD仍较高,无法达到排放标准。应用好氧处理技术处理废水,需要对原废水进行稀释,并且会消耗大量的能源。为保证达到更加理想的生物制药废水处理效果,可以将好氧处理技术和厌氧处理技术融合,实现对生物制药废水的高效、高质量处理。在具体应用中,需要按照前处理—厌氧生物处理技术—好氧生物处理技术的顺序进行处理,保证废水处理的有效性。

(二)物化处理技术物化处理技术,在当前生物制药厂废水处理中也起到了一定的作用,在应用的时候需要借助物化处理技术作为生化处理的处理工序。现阶段,物化处理技术的应用,主要包括膜分离法、吸附、离子交换等。

(三)化学处理技术在应用化学处理技术的过程中,需要借助试剂方可展开试验,如果试剂使用不合理,则极易导致水体二次污染。基于此,在应用该技术前需要进行实验研究。常用的化学处理技术现主要包括化学氧化还原法、深度氧化技术以及铁碳法等。

三、某生物制药厂废水处理技术的实践应用探讨

以某生物制药厂废水处理为例,利用好氧生物处理技术———生物膜法展开对高浓度有机废水的处理,验证其处理效果。调查显示,该生物制药厂在生产运转中的污水排放量为每天160m3,废水污染物为氨氮、悬浮物质等等,废水pH值为6.0~9.0。

(一)生物制药废水处理工艺流程生物制药厂废水中污染物种类多,应用好氧生物处理技术———生物膜法进行处理,首先需要进行预处理,和将冲洗废水、水环泵水和废气吸收液同时输送到氧化调节池中,然后将适量的氧化剂加入池中进行化学反应,应结合氧化池的融合来对氧化时间进行合理化的控制。通过化学反应,将反应不充分的原料、产物和副产物进行解毒,断开内部结构链,提升B/C。该生物制药厂在药物生产中,采用的是间断式的生产模式,所排放的废水的水质及水量存在诸多的不确定因素,在这种情况下,应在调节池当中进行均质,避免大量悬浮颗粒的产生。可以将曝气装置设置于池底部,然后通过空气搅拌的方式避免池底出现大量沉淀。除此之外,还需要定时定期的清理隔油区,并对杂质进行无害化处理,避免造成污染。其次,在完成水质、水量均质工作后,需要将废水引入到初沉池中,然后在初沉池当中加入适量的絮凝剂和还原剂,通过这样的方式,去除掉废水当中的固体悬浮物和大分子化合物,降低生物处理负荷,最后需要及时将污泥排放到浓缩池中。再次,高浓度有机废水在经过沉淀后,利用泵将其引入到复式兼氧池中,依靠局部微氧工艺和厌氧水解酸化工艺展开进一步的处理,废水处理中,复式兼氧池具备良好的抗负荷冲击效果,并且能够有效的去除掉化学需氧量,甚至能够实现对好氧环境下无法降解的有机物的分解,通过水解酸化菌反应,提升废水的节生化性,有效降解高浓度废水中的有机物。最后,利用复式兼氧池完成对高浓度有机废水的处理工作后,需要继续将废水输入到二沉池中,在进行充分的沉淀后,输入到A/O池中进行硝化反应和反硝化反应,逐一清理掉废水当中的氨氮等物质。接着利用微生物的生命活动,促使有机污染物进行氧化反应,最终将其分解成为稳定性较强的无机物。在整个操作中,应严格地按照A/O工艺条件展开操作。为避免出现突发事件,降低废水处理中对于周边环境所带来的影响,非常有必要增设一个事故池。

(二)好氧生物处理技术———生物膜法的应用效果该生物制药厂废水处理30天实现满负荷运转,45天后出水符合国家污水排放以及标准,90天后符合环境监测站中的验收标准,可以看出,该生物制药厂的废水处理效果是非常理想的。本次试验中,将好氧生物处理技术———生物膜法应用于生物制药厂废水处理中,取得了良好的效果。具体来说,主要体现在以下几个方面:首先,该工艺技术有着良好的耐冲击负荷力,在固定床式酸化水解池中,充分发挥出其吸附作用,能够达到更加理想的负荷处理效果。并且水解菌挂膜速度较快,和厌氧处理方式相比较而言,具备更快的水解反应速度。其次,在上升流速、反应时间方面较为理想,在水解产酸时期依然能够有效控制生物反应,避免了甲烷化现象的发生,同时也无任何H2S、CH4生成,极大地提升了可生化性能。再次,应用好氧生物处理技术———生物膜法进行高浓度废水处理,能够实现对污泥产生量的有效控制,最大限度地避免污泥膨胀现象的发生概率,同时也更好地保证了出水质量。最后,好氧生物处理技术———生物膜法最主要的应用优势就在于有着较高的废水处理效率,在这其中,CODcr、BOD5去除效率均在标准范围内,出水基本满足生活杂用水需求,实现了对废水的回收再利用,避免了资源的浪费及污染。

四、结语

综上所述,当前随着生物制药企业的快速发展,所引发的废水污染日益严重,生态环保可持续发展背景下,做好生物制药企业废水污染处理工作具有重要的现实意义。在生物制药厂废水污染处理中,要合理应用生物处理技术、物化处理技术以及化学处理技术,充分发挥每一项技术的功能作用,达到最佳的废水处理效果,降低废水处理成本,实现清洁化生产,促进生物制药企业的可持续发展,同时也保证社会稳定发展。

参考文献:

[1]穆春芳.制药废水处理技术研究和难降解污染物的溯源分析[D].长春:东北师范大学,2018.

[2]沈耀良,王宝贞.废水生物处理新技术-理论与应用(2版)[M].北京:中国环境科学出版社,2016.

[3]戴启洲,蔡少卿,王家德,等.臭氧_生物法处理制药废水[J].中国给水排水,2018(10):122-125.

[4]陈宏雨,任晓明,张玮,等.生物制药废水处理回用工程实例[J].水处理技术,2017(05):130-133.