公务员期刊网 论文中心 生物与制药工程范文

生物与制药工程全文(5篇)

生物与制药工程

第1篇:生物与制药工程范文

所谓“双语教学(BilingualTeaching)”,英国著名的朗曼出版社出版的《朗曼应用语言学词典》所给的定义是:Theuseofasec-ondorforeignlanguageinschoolfortheteachingofcontentsubjects(能在学校里使用第二语言或外语进行各门学科的教学)。我们可以具体理解为:在教学过程中,包括在教材使用、课程讲授、课后辅导、考试等诸多教学环节中使用外语和汉语两种语言进行教学。随着我国对外开放步伐的进一步加大以及对外交流的日益频繁,迫切需要大量的既精通英语、又有丰富专业知识的高素质“复合型”人才。为此,教育部高教司在2001年4号文件中就已经提出:今后本科教育20%以上的课程必须进行双语教学,同时强调率先在金融、法律、生物技术、信息技术、新材料技术及其他国家发展急需的专业开展“双语教学”。然而,目前国内双语教学(英语和汉语)仍存在有普遍问题:教材选择混乱、教学手段落后、师资队伍和学生英语基础参差不齐等等,使得双语教学举步维艰,学生产生畏难、抵触情绪[1~4]。因此,研究和探索合适的双语教学方法,是一项迫切的任务。

1《生物技术制药》进行双语教学的重要性

《生物技术制药》是制药工程和药学专业的一门主干课程。生物技术制药是采用现代生物技术,利用生物体作为生物反应器,按照人们的要求来生产所需的医药产品的高新制药方式。基因工程干扰素、基因工程甲流疫苗、基因工程乙肝疫苗、重组人肿瘤坏死因子、抗癌中药紫杉醇的生产技术等等都是生物技术制药的杰出成果。在人类与病毒及各种疾病的斗争中,生物技术制药的巨大作用和优势日益突现,生物技术制药已被公认为是最有发展前景的制药方法,也是国家提出的新兴战略产业-生物医药产业的重要组成成分[5,6]。近年来,随着生物药物发展的突飞猛进,生物技术制药的新理论、新技术层出不穷[7,8],给课程教学带来挑战;同时由于生物技术在医药领域获得了越来越广泛的应用,生物药物的种类和数量迅速增加[9],教学中需要不断补充新知识和新内容;另外,目前我国制药工业的研发和生产与国外相比,仍存在较大差距[10],其中一个原因就是我国的制药工程学科的教育与国外相比还存在着很大的差距。因此,为了更好地学习先进的生物制药知识与理念,拓宽学生的知识面,加快我国医药产业的进一步发展,在生物制药工程专业开展双语教学是十分必要的。

2《生物技术制药》进行双语教学的课程教材和师资力量的建设

2.1课程教材的建设在双语教学中,我们以外国原版教材为基础,编写适合制药工程专业本科生的《生物技术制药双语教程》和教学参考资料。我们选用国外生物技术制药优秀教材:2007年出版的由DaanJ.A.Crommelin,RobertD.Sindelar和BerndMei-bohm主编PharmaceuticalBiotechnology:FundamentalsandAppli-cations(生物技术制药:基础和应用)和RodneyJ.Y.HO主编的Biotechnologyandbiopharmaceuticalstransformingproteinsandgenesintodrugs(生物技术和生物药物,从蛋白和基因到药物)。国外教材突出的特点是实用性较强,而这一点恰恰是多年来中国教材中的薄弱环节。国外教材中还配以各种案例,通过对案例的分析,能提高学生的分析问题、解决问题的能力,使学生能把学到的东西应用到实际工作中去。

2.2师资力量的建设在师资力量上,本课程的授课教师均是本专业具有高级职称并具有海外留学背景的教师担任。另外,我校建立了双语教学培训班,定期派遣青年教师到英语国家进行学习。这些长期活跃在科研第一线和留学归来的教师,是我们进行双语教学的骨干力量。

3《生物技术制药》进行双语教学的教学方法

与双语教学这种授课模式相对应,我们在授课过程采用适合的教学方法。

3.1多媒体教学在双语教学中,授课对象是大三的本科学生,授课方式主要采用多媒体教学。由于《生物技术制药》是实践性较强的一门课程,课件中将理论和操作技术多采用视频和Flash动画展示。这样就使所讲的内容通俗易懂,易于学生理解记忆,激发学生兴趣。在授课过程中,采用英语讲解配合英文幻灯片的模式。对于难度较大的知识面,教师会辅以适当的中文讲解。

3.2小组讨论由学生自由组合,分成若干个小组。教师根据学生情况,设定几个题目,让学生自己收集双语材料进行课后讨论。讨论后鼓励各组学生代表用英语发言,教师进行归纳总结,并进行评选。这样做,学生将主动学习并收集学习资料,拓宽了理论知识和英语的广度和深度。

3.3开辟双语教学网站将授课课件提前在网上公布,可帮助学生预习生词、了解教师讲解线索和重点内容,培养学生的学习兴趣。同时在网站的论坛上,学生还可及时地进行交流和提问,教师将给予解答。

3.4成绩考核体系采用了结构化评分方法对学生进行课程考核,即总成绩由多部分组成:课后小组讨论占20%,多种形式的平时测试占30%,期末考试占50%。

4《生物技术制药》进行双语教学在学生中的问卷调查和效果

评价我们通过以上教学方法,对我校制药工程和药学专业本科生进行问卷调查,调查《生物技术制药》进行双语教学的认同率、授课内容、教学方法、以及教学效果评价等。发放187份调查表并全部收回,有效份数185份,占98.9%。调查结果表明,95.2%的学生认为有必要进行双语教学方法,认为一般的占1.5%,认为没必要的仅占1.7%。这个结果说明,绝大部分学生已经认可了在《生物技术制药》课程进行双语教学这种教学模式。

4.1《生物技术制药》进行双语教学授课内容的选择为了确定双语教学可用于《生物技术制药》的具体章节,我们对其进行了调查。结果(见表1)表明,除概论外,其余的章节,如基因工程制药、细胞制药、酶工程制药、发酵工程制药、抗体工程药物、基因治疗、转基因动物与生物反应器等学生赞成使用双语教学。概论部分,可能是学生刚接触双语教学,对课程内容不熟悉,并且概念和进展内容较多。因此,在概论的讲授中,我们将在进行英文幻灯片放映和英语口授的同时,配以中文讲解其中的概念。

4.2对双语教学的方法的满意度调查结果(见表2)表明,全部学生赞成使用多媒体教学和建设教学网站,绝大部分学生赞成小组讨论。这个结果表明我们使用的教学方法适合教学内容。

第2篇:生物与制药工程范文

[关键词]生物技术制药;教学内容;教学方式;考核方式

生物制药是融会贯通药学、生物学、工程学等多学科的一门新兴交叉型学科,其以生命科学为基础,以生物技术制药为支撑,是当今学科发展中最为活跃的科学领域之一[1]。在教学实践中,生物技术制药的授课效果往往被一些因素所限制,如生物制药技术发展迅速,教学内容难以同步更新;教学方式较为枯燥,学生的积极性和学习效果有待提高;考核方式单一,忽略了对学生应用实践能力的评测[2]。因此,对生物技术制药教学进行改革和创新,对培养高素质创新型的生物医药类人才具有重要意义。

1生物技术制药教学现状

生物技术制药是利用基因工程、动物细胞工程、抗体工程、酶工程、发酵工程、蛋白质工程等技术原理,开发和生产药物的一门学科。生物技术制药是药学专业学生的核心课程之一,其涉及多种生物制药方式的基本原理和技术,涵盖了现代化药物制备的流程及质量控制手段,如抗体、疫苗、基因重组药物的开发和应用,对培养具有创新能力的实践应用型人才至关重要。该课程的核心任务是提高教学质量,激发学生的学习兴趣和主观能动性,培养学生的实践应用能力。然而,在生物技术制药的实际教学中,仍存在着一些难题。在教学内容上,教学内容与其他课程有重叠,教材内容更新换代不及时,课程设置与实际需求不符,重理论轻实践,造成学生应用能力较差,无法达到市场实际需求[3]。在教学方法上,由于生物技术制药知识点多且信息量大,传统的教学方法难以引导学生深入理解课程内容,不利于学生创造思维的提升[4]。在考核方式上,传统的考核多采用闭卷考试的方式进行,不科学的考核制度会降低学生的积极性,不利于学生实践应用能力的发展[5]。为了优化教学效果,培养学生的创造性和实践能力,实施生物技术制药教学改革已刻不容缓。

2生物技术制药教学内容改革

生物技术制药一般在本科三年级第六学期时开设,在药学专业学生的培养计划中具有重要作用。在实际教学中应优化筛选课堂内容,加速学生对新知识的理解吸收[6]。另外,不同制药技术的知识点也呈现内容交叉,教师应以制定的考试大纲为标准,精炼教学内容,夯实基础知识。如细胞工程制药贯穿于生物技术制药,隶属于核心内容,是该课程的重点教学内容。在授课前,学生已经系统地学习了分子生物学、药剂学等专业课知识,教师应对本章教学内容进行适当的调整和删减,以重新进行体系整合,优化知识结构。通过对教学内容的精炼,有助于引导学生深入理解课程的核心内容,以夯实生物制药的理论基础知识。近年来,生物技术学科迅猛发展,各种新概念和新方法不断涌现,然而教材中的内容和方法难以同步更新。因此,生物技术制药课程亟须进行教学内容的改革。在备课过程中,教师应结合国内外最新的研究进展,对课程内容进行完善,推进课堂改革,从而拓宽学生的知识视野,将理论和实践更好地结合。如在教学中加入靶向药物、转基因制药、合成生物学、纳米药物等科学前沿成果作为补充内容,扩展学生对生物技术制药最新进展的认识,确保教学内容的连续性、创新性及实用性[7]。教师通过在授课中加入大众所熟知的新药或疫苗的研发过程及制作步骤,激发学生的思考热情及学习兴趣,逐步实现能力目标和素质目标,以符合职业发展的需要。

3生物技术制药教学方式改革

传统教学中,教师往往在课堂中占据着主体地位,教学方式繁杂且枯燥乏味,教学效率较低。近年来,互联网时代对高校的教学方式产生了深远影响,信息化教学受到了越来越多的关注,其能够简化教学程序,使抽象的理论知识更为生动形象。信息化教学是指利用现代的信息技术手段,实现教学环节的数字化,从而提高课堂上的教学质量[8]。如在抗体工程制药这一章节,涉及单克隆抗体的制备,仅仅依靠课堂上语言文字教学,难以激发学生的学习兴趣。教师可以通过搜索网络上的资源,下载关于单克隆抗体制备技术原理的动画视频,穿插在教学PPT中,使教学内容能够生动直观地呈现,从而激发学生的探索热情并增强其对新知识的理解。在病毒肺炎疫情影响下,师生难以建立实体课堂,线上授课成为主要的授课方式。慕课堂智慧教学(简称“慕课堂”)是基于中国大学慕课研发的智慧教学工具,该教学方式能将线上、线下课堂混合开展并且融会贯通[9]。在生物技术制药教学中,可以选用国家精品在线开放课程作为资源,将慕课堂作为在线讲授的平台,同时建立QQ群进行辅导答疑,具体方法如下:(1)授课前建好课程资源。教师指导学生通过电脑或手机注册登录慕课账户,随后教师在平台上将学生按照班级分组。教师要提前载入与课程相关的国家精品在线开放课程作为视频资源,并于授课前3d在平台上视频资料和相关习题。学生在课前完成预习后,教师可以在网络平台上观察学生的自学情况和进度。(2)组织线上教学。教师在微信慕课堂小程序中课堂教学任务,如签到、观看视频、课堂练习等。首先通过习题测试加深学生对上节课重点教学内容的记忆,随后开展本节课程知识点的教学。学生观看教学视频后,需要按时完成慕课小程序中的课堂讨论及测试,教师能够在平台上观察学生的测试成绩。(3)开展答疑互动。教师在上课前将学生按授课班级加入到QQ群中,并在QQ群中教学PPT,方便与学生进行课堂互动及课后学习交流。这种新型的联合教学方式受到了学生们的喜爱,学生积极性和参与度高,得到了较好的教学效果。

4生物技术制药考核方式改革

教学考核是评估教师教学水平和学生学习效果的主要方式。生物技术制药教学的知识点多且信息量大,如果不采用科学严谨的考核方法,会降低学生的积极性、创造性和实践性,使学生陷入死记硬背的错误学习方法中。目前的教学考核方式较为单一,侧重于对知识点的记忆,而忽略了对学生学习和应用能力的评测[10]。因此,在生物技术制药教学的考核中,教师应重视学习能力、独立完成能力、实践能力的培养,使考核方式相对灵活并呈现多元化。在考核过程中,教师需要评估学生的平时表现,并结合期末考试的成绩,最终通过综合考评核定最终课程成绩[11]。课程成绩采用百分制,其中,平时成绩占最终综合成绩的50%(课堂提问占20分,专题研究占30分)。课堂提问常采用教师提问模式,每节课后预留10min,学生发言的质量和正确率计入成绩。这样有助于学生积极思考并定向理解,提高其思维活跃度、语言表达水平和知识掌握程度。专题研究采用综述性论文形式,由学生选择与生物技术制药相关的主题,字数为6000字以上,内容不限。学生可以自由选择感兴趣的主题,并通过数据分析和大量的文献调研来论证自己的新观点。论文要求按照综述论文的标准格式进行撰写,引用的参考文献应以近5年的科研论文为主。综述论文的评分标准为:论文结构的完整性及格式的规范性(10分)、论文对学科发展的指导意义(5分)、论文能否全面反映该知识领域的主要学术观点及最新动态(10分)、参考文献的全面性及时限(5分)。此外,期末考试为闭卷形式,主要考核学生对生物技术制药基本原理和重要知识点的掌握水平,笔试成绩占综合成绩的50%。这种灵活的多元化考核方式更为注重学生主观能动性和学习能力的培养,拓展了学生对学科知识的积累。因此,综合成绩评定能激发学生的学习积极性和创造力,客观地反映课程改革后“教”与“学”的双重效果,实现更为严谨科学的教学考核结果[12]。

5生物技术制药教学改革效果

为了掌握生物技术制药教学改革的运行状态,本校全面征集了药学院2017级药学系92名学生对课程改革的反馈意见。问卷采用匿名调研方式进行,以便学生能表达自己内心的真实观点。调研结果显示,77名(83.70%)学生对课程改革持肯定意见,15名学生(16.30%)更认可传统的教学方式。另外,学生的课堂出勤率和平均成绩较上一年度(采用传统教学模式授课)有明显提高,这表明生物技术制药教学改革能在较大程度上推进教学效果,提高教学质量。

6小结

第3篇:生物与制药工程范文

【关键词】发酵工程实验;教学改革;教学效率

生物技术制药是新药研发的重要组成,其产品的实现一般需要发酵工程的参与,因而发酵工程是生物药物工业化生产的核心。现酵过程中不断涌现新技术和新方法,因此实践性和应用性强[1]。在工业发酵生产进行的数十年中所积累的丰富经验,结合生物科技的发展,已经上升为理论性的知识,并不断继续扩展。这些知识在发酵工程教学中非常关键,也是发酵理论知识的重要补充[2,3]。通过发酵工程实验教学,学生可以直观的面对理论教学中出现的各种现象和过程,更好地理解和掌握发酵工程的原理和方法,认识发酵相关设备与学习基本操作技能。从而达到培养学生结合理论知识分析实验现象和解决问题的能力,掌握基本的实验操作技能的目的。在实验学习中,综合提高学生的发现问题、分析问题和尝试解决问题的能力。以发酵中出现的问题为出发点,引导学生主动从理论知识出发,结合实验现象,寻找和解决问题,实现学习方式的转变。

1与制药相关发酵工程实验课开设现状

发酵工程作为武汉大学药学院生物制药的主干课程已有14年,成立生物技术制药专业后发酵工程实验课程作为必修课程开设了3年。按照我校生物技术制药专业的人才培养目标,相关课程如生物技术制药实验和生物化学实验,其教学内容与发酵工程实验课又很大的关联与分工。在武汉大学药学院的具体教学工作中,通过各授课教师的协调,做到在这三门课程的理论教学与实验教学中均不存在内容重复,并且具有一定的连贯性。虽然发酵工程实验课程由相对独立的实验构成,但是存在多是相对比较基础的微生物实验内容,不能兼顾发酵各环节和不同发酵类型的不同情况,因此有必要对其实验内容进行重新设计与整合优化。

2发酵工程实验课的教学改革实施方式

2.1提高教学效率

重新设计之前由于实验内容偏向基础的微生物实验,采用比较松散的每周一次课。在新的设计中,每周上两次课,因此过去全学期的实验课程现在半学期就可以完成。但是每次上课都需要至少8个小时,在各次上课之间的时间,也根据实验内容穿插安排取样、观察、制样等过程,保证教学内容可以完成。而且开课时间也相应稍晚于理论课进程,基本在发酵工艺讲解后开始实验课。目的是使学生在对整个发酵工程的内容开始有一定认识后再进入实验课,避免过于陌生而出现盲目的按照实验步骤操作而不理解的情况出现。与部分院校开设“一条龙”式实验教学不同,武汉大学药学院开设发酵工程实验课是分段式的。其原因:第一是学生的教学安排还有其它课程,很难实现连续数天的时间单独进行实验教学;第二“一条龙”式实验教学要求前后连贯衔接,如果中间某步实验不能达到实验目的,那么下一步实验就不能按计划进行,会严重干扰教学进程[4]。而采用的分段式实验安排,虽然不是前后相连的实验,但是在内容上比较全面的涉及了发酵工程的主要操作内容,可以使学生系统的学习和了解该课程的学习要点。而各实验分别在上课前进行准备工作,可以保证课程的顺利进行。另外,在实验进程中,由于微生物生长需要时间,因此将不同实验内容穿插进行。这样可以避免“一条龙”式实验模式中必须等待上步实验结果出来才能进行下部操作的问题,节约了时间,提高了实验室的利用率。降低了与其它课程的时间冲突,同时也方便了课程以及教室安排和学生选课。

2.2实验教学体系整合优化

以前开展的发酵工程实验中,内容以发酵工程基本操作及菌种筛选等为主,比较简单枯燥。改革后结合武汉大学药学院生物制药专业的特点,与发酵工程设计的相关课程相互协调,避免开设雷同的实验内容,但是又与微生物、微生物制药、制药工程等相互关联或前后衔接,形成连续而有机体系,彻底从验证性实验向综合性实验转变[5]。这种综合性的实验教学设计将促进学生从发酵的整体目标出发进行思考,全面分析某一发酵过程出现的现象,确定关键的操作点,从全局的角度出发来思考和学习发酵工程知识[6]。

2.3实验教学内容的重新设计与调整

根据我院生物技术制药专业的培养目标,我们选择实验课程兼顾系统性、科学性和实用性,安排学生从基本到相对复杂的操作上手,以典型的发酵过程和产品生产为主干知识,将实验教学内容安排为7个实验项目,分别是:优化液态发酵条件、机械罐操作及动力学研究、菌种诱变、培养基优化、固态发酵制作米酒、淀粉原料处理、固定化发酵。按照循序渐进、由易到难的方式安排。重新设计的实验教学内容更加丰富,有利于学生综合运用知识和创新能力的培养。

3结语

进行课程改革的目的是帮助学生更好地学习发酵工程实验技术,如果一味追求漂亮的实验流程和实验结果,可能给学生的学习过程带来一定的不便。我们的改革从强化学习要点出发,通过快速和鲜明的实验过程帮助学生提高学习效率。在未来的实验教学中,我们将继续本着这个目标不断改进,进一步探索和完善适合生物制药专业的发酵工程的实验教学方式,达到培养全面合格的创新型生物制药人才的目标。

参考文献

[1]赵辉.高校发酵工程类课程实验教学探索[J].安徽农业科学,2017,3:245-246.

[2]胡仙妹,邵化,马科,等.生物技术专业《发酵工艺学》教学改革探索与实践[J].轻工科技,2016,12:188-189.

[3]贺气志,唐亮,夏俊,等.医学院校生物技术专业发酵工程实验体系的构建[J].长沙医学院学报,2016,3:1-6.

[4]崔艳,付荣霞,樊秀花.生物工程专业创新性实验项目的探索[J].大学教育,2016,9:162-163.

[5]生书晶,佘婷婷,孙婷琪,等.发酵工程课程教学改革探索与实践[J].高教学刊,2016,13:69-70.

第4篇:生物与制药工程范文

关键词:OBE理念;生物工程设备与设计;课程改革

OBE(Outcomebasededucation)也称成果导向教育,是以学生通过教育过程取得学习成果,为进行教学设计和达到教学实施目标的一种新型教育模式,其实施过程强调教学活动以成果为导向、以学生为中心。生物工程设备与设计作为生物制药专业的专业必修课程,是在专业基础课之后开设的与生物反应和生物制药设备原理、结构、设计及应用相关的一门专业课,是将药理学、药剂学、生物制药工艺学等理论性课程知识应用于药物生产,进行科研成果转化时必须使用的一门课程,对培养学生生物制药工程化的能力具有其他课程不可替代的作用[1]。因此,要将OBE理念应用于生物工程设备与设计课程改革当中,使之贯穿于教学各环节,通过制定基于OBE理念的课程目标、教学大纲、教学内容,改革课堂教学模式和考核体系,突出实践能力和创新能力培养,使课程建设服务于社会发展需求和专业人才培养,这具有十分重要的现实意义。

1课程改革的必要性

从近三年来大庆地区制药企业用人单位的反馈情况来看,毕业生普遍存在以下问题:一是实际应用能力较差,理论与实际脱离,不能迅速达到岗位需求;二是缺乏综合创新能力,无法有效解决企业的实际问题。这说明在人才培养过程中更加注重理论知识的传授,对学生的工程素质培养尚不够深入。因此,要在教学实践活动过程中探索出一种新的、合理的专业课教学模式,突出“以学生为中心”和“以产出为导向”,从“教得好”向“学得好”转变,激发学生的学习兴趣和潜能,增强学生的社会责任感、创新精神和实践能力,使学生毕业后进入企业即能够胜任相关工作。

2基于OBE教学理念的课程设计

大庆师范学院作为一所地方应用型本科高校,生物制药专业的人才培养要求毕业生既能在生物医药企业从事药品的生产、研究、营销和质量管理,也能够胜任医院、药检和药事管理相关部门的分析、检验、管理和监督等方面的工作[2]。基于OBE理念、人才培养目标和毕业要求,确定了四个课程目标:一是了解生物制药工业中生物工程设备的共性,认识生物工程设备在生物制药中的重要地位和发展现状;二是强化工程思维,能够将工程知识应用于生物药物设备的新技术开发和工程设计当中;三是掌握生物药物分离纯化过程中各设备的原理、结构、操作方法和选用原则,能够对生物药物生产的工艺流程进行设计、对比和优选流程;四是能够依据所学知识,根据原料药和药剂生产要求,选择和研究路线、设计可行的实验方案。课程目标是课程教学模式的核心,须在教学过程中贯彻始终,根据课程目标调整教学内容,进行教学设计,持续关注学生的学习成果,以学生为中心进行课程教学改革,培养学生的工程思维及素质。要使学生能够掌握不同类型的生物产品生产设备的结构及工作原理,具备应用这些基本理论去分析和解决生产过程中具体问题的能力,培养学生改造原有生产过程使其更符合客观规律的创新能力,如图1所示。

3“54321”教学体系的构建

3.15部分教学内容的制定

作为现代生物工程技术成果转化为现实生产力的关键环节,生物工程设备与设计是生物工程技术和化学工程与设备交叉的结合体[3],在制药行业中起到承接上游研发和指导下游生产的作用,具有发展快、形制多、要求严等特点,有比较鲜明的工程和应用特色。因此,其教学内容既要体现应用面广、实用性强、工程实践性强的特点,又要支撑以下毕业要求:能够根据复杂生物制药问题的目标提出有针对性的设计,开发初步解决方案;能够用设计图纸、研究报告等形式呈现设计/开发成果;能够运用专业知识就复杂生物制药问题与业界同行和社会公众进行书面和口头的有效沟通和交流,包括撰写报告和设计文稿、陈述发言、清晰表达或回应指令;理解并掌握生物制药管理原理与经济决策方法,并能在生物制药实践中应用。因此,根据课程目标,结合大庆福瑞邦医药有限公司和大庆志飞等多家大庆地区制药生产企业的实际案例和就业需求,进行资料整理和内容梳理,建设自用讲义,全面介绍生物产品生产各个阶段的设备结构及原理,将企业生产的实际案例融入到教学内容中,并在教案中明确标示出与企业结合的位置,真正做到将企业生产要求和行业标准与教学内容、目的、要求、课堂组织相结合,将实用、有效、先进原则和一纲多本的理念进行切实贯彻。将教学内容分为生物反应设备、提取精制设备、物料输送设备、公共辅助设备、药剂生产设备五大部分,共计20个章节,其章节内容与实践结合方式如下:3.1.1将理论课堂搬进工厂———工厂见习、现场讲解。组织学生到企业去,以工厂见习的形式,将部分章节的授课地点设在企业车间,通过现场参观、技术人员讲解的方式将第1章绪论、第5章膜分离设备、第9章蒸发与干燥设备、第10章结晶设备、第11章物料输送设备、第12章物料灭菌设备、第13章气体除菌净化设备、第14章制药用水生产设备、第15章换热和制冷设备、第16章药用包装设备的内容进行现场讲解,提高学生对生物工程设备的整体性认识,加深其在整个制药产业中的重要性认知,提升职业自豪感。3.1.2将工厂应用搬进教室———企业讲坛、案例讲练。聘请企业技术人员到学校来,以企业讲坛的形式讲授第2章生物反应器的实际应用、第3章固液分离设备的操作注意事项;在理论教学过程中以案例讲解的形式,分别在第6章萃取分离设备、第7章色谱分离设备、第8章蒸馏设备、第20章中药提取生产设备中将酒花浸膏生产过程、黄芪多糖精制加工、精油提取生产工艺和双黄连口服液生产与理论知识相结合,强化学生工程思维,增强对比和优选流程的能力,为今后生物药物生产的工艺流程设计打好基础。3.1.3充分调动学生积极性———在线互动、自主总结。以学习效果为驱动力,利用学校教学平台和网络交流平台,以资料查阅和分组互动的形式,指导学生查阅相关资料,讨论和总结第4章气固分离设备的分离原理、第17章口服固体制剂生产设备、第18章注射剂生产设备、第19章其他制剂生产设备的生产过程,使学生们在未来的工作学习中,能够依据所学知识,根据原料药和药剂生产要求,选择和研究适当路线、设计可行的实验方案。

3.24个教学模块的设计

基于课程目标和教学内容,结合前期的教学效果调查和学生反馈,将原有的单纯课堂讲授方式改为线上线下、校内校外多向并举的方式,即将原本的单一教学模块创新性调整为课堂理论(线下)、网络平台(线上)、工厂见习(校外)、案例设计(校内)四个教学模块。通过基本理论的课堂讲授、实地参观设备运行情况和工程技术人员的讲解,激发学生对生物制药设备知识的学习兴趣,引导学生的课下调查方向向着深入药物生产过程,满足实际生产需求的方向前进。

3.33个“三分之一”教学体系的建立

根据生物工程设备与设计课程的特点,利用课程教学目标和内容将学校、学生、企业三方有机联合在一起,充分利用大庆地区生物药物生产企业设备的先进性、厂区的综合性、地理的便利性,按课程内容的深浅渐进,分阶段带领学生到车间参观见习,安排企业内技术人员现场讲解,开展企业讲坛,实施企业车间内实地教学、学校课堂内案例讨论、课下行业调查分析的三方多管齐下的开放联合式教学,以工学理念指导学生学习。其具体设计为3个“三分之一”:课堂讲授占三分之一,在不间断课程建设的基础上,结合自编讲义和课后作业,精炼课堂理论讲解内容和重难点,便于学生理解和记忆;平台教学占三分之一,建设网络教学平台,在平台中上传相关案例和阅读参考资料、习题等,便于学生查阅和巩固所学知识;工厂见习占三分之一,组织学生到相关工厂企业见习参观,加强理论和实践操作间的联系,给予学生直观感受。同时,以学生的学习和发展为核心、以学生的学习效果为目标,改革教学方法、创新教学手段。采用问题式、启发式、互动式教学,调动学生学习积极性,使学生达到对知识的理解性掌握,真正做到能够应用于实践,并在实践中成长,更全面、灵活地掌握生物工程设备与设计课程的相关内容,为其将来就业打下良好基础。

3.42个网络平台的建设

在微课、慕课等网上教学快速发展的时代,分别打造网络学习和交流两个平台,一是具备丰富教学视频、音频、课件、典型案例、题库、素材库、重点难点指导等课程资源,可促进学生自主学习、拓展学习的网络学习平台;二是以QQ群和微信群为主体,可实现学生、教师、技术人员的实时交流互动,便于群组协商完成作业,方便课后答疑和讨论,充分发挥学生主动性的网络交流平台。要实现学习过程的即时管理,进行师生在线互动,调动学生学习积极性,从根本上激励学生自己去探索、去求证、去发现,真正做到一课多样。

3.51套强化过程考核的评价体系

以课程目标为基础,制定一套强化过程考核的评价体系,改革评价标准、评价方式和评价维度。运用有效的技术手段,对教学活动的过程及其结果进行考核。学生的学习评价结果最终以多项考核为基础进行综合评定,即将考试方式向多样化转变,以评价学生的综合分析能力和解决实际问题的能力为主,由知识考核向能力考核转变,破除“高分低能”的积弊。生物工程设备与设计的考核,根据课程内容实行多种形式、多个阶段、多种评定方法的考试制度,将理论部分的课堂教学、实践部分的校外实习、教学平台的自主学习三套考核方法进行整合,明确成绩构成,将原本期末考试占总成绩70%的终结性评价课程考核模式改变为期末考试占50%、见习报告占10%、出勤占5%、平台作业占15%、课堂互动占20%的过程性评价考核体系,并在期末试卷中增加与工厂见习相联系的应用性题型,灵活化参考答案与评分标准。这从根本上改变了学生在平时学习过程中普遍存在的“作业上网找、实验临时搜、考前拼命背、考后全都忘”的情况,增加了学生自主表现机会,使教师能够及时发掘和合理开发学生的个性特征,为真正达到因材施教奠定基础。经过三年的考核体系建设,平均成绩提升效果也比较显著,从14级生物制药专业学生平均成绩的76.44,提高到16级平均成绩的81.98。

4结语

基于OBE理念,构建了生物工程设备与设计课程的“54321”教学体系,极大增强了理论知识与生产实际的结合,提升了学生学习的主动性,为学生提供了更宽阔的增长见识的平台,将枯燥的理论知识以更形象和生动的方式教授给学生们,提升了学生对生物工程设备原理及相关知识的学习兴趣。学生通过对本门课程知识的学习和掌握,能够完成相关实验室开放、创新创业项目和毕业论文。参加学科竞赛等实践活动,对提高学生综合创新能力有很大的帮助,利于学生们在生物制药相关行业和领域开拓创新,提高学生的就业生存能力。

参考文献:

[1]陈小举,晏娟,蒋慧慧,等.“生物工程设备与工厂设计”课程教学改革探索与实践[J].巢湖学院学报,2019,21(06):153-158,164.

[2]张志国,李铭,张虹,等.生物制药专业应用技术型人才培养方案的构建[J].安徽农业科学,2015,43(23):376-377.

第5篇:生物与制药工程范文

关键词:生物制药;废水;处理技术;应用探讨

现阶段,随着生态环保可持续发展理念的提出,对于各行各业的发展提出了新要求。生物制药厂快速发展的背景下,所引发的废水污染问题引发了社会各界的高度关注,生物制药厂废水中含有诸多的有害物质,如果这些污水不经处理随意排放,将会造成严重的污染,甚至会导致疾病的传播,因此要高度重视。

一、生物制药废水概述

近年来,由于受到诸多因素的影响,疾病呈现出高发趋势,对于治疗药物、保健药物、疫苗的需求量越来越大,这极大地推动着生物制药企业的发展,但同时也产生了越来越多的废水,这些废水属于高浓度有机废水,处理难度高。据相关统计数据资料显示,当前我国生物制药企业有近5000多家,产品种类多,工艺差别较大。生物制药厂生产运转中所产生的废水,含有高浓度的有机污染物,并且种类非常多,水质水量变化大。如果没有进行处理肆意排放,将会引发严重的污染问题。在此情形下,如何实现对生物制药企业废水的有效处理成为一项重要工作。

(一)生物制药特点通过实际调查分析我们发现,当前生物制药企业在广东、山东以及山西的分布较为广泛。近年来随着产业结构调整的不断加快,相关政策的出台实施,越来越多的生物制药企业成立。由于生物制药行业发展时间较短,生产集中度不高,再加上缺乏创新意识,这极大地阻碍着生物制药领域的发展。按照生产工艺的不同,可以分为两类,一类是生物制药,指的是提炼植物等有机原料进行制药,另一类则是化学制药,指的是依靠化学反应所制成的药物。两者相比较而言,化学制药过程中需要应用更多的辅料,因而也就会产生更多的废水。

(二)生物制药废水特点在制药过程中,生产工艺是影响废水差异性的重要因素。生物制药生产工艺复杂多样,因而在生产中所排放出的废水污染性极强,会严重污染水源及周自然生态环境。生物制药厂废水主要包括废滤液、溶剂回收残液、废母液,这些废水均含有高浓度的污染物,酸碱性和水温变化大,废水处理难度高。

二、生物制药废水处理技术分析

为降低生物制药废水对于水源及自然生态环境所造成的污染,要积极做好废水处理工作。现阶段,生物制药废水处理过程中,常用的处理技术主要包括以下几种:

(一)生物处理技术现阶段,生物制药厂在废水处理中,生物处理技术是常用技术之一,能够有效地将有机物污染物消除掉,同时该技术应用具备良好的经济性。生物技术技术又包含着多种技术,每一种技术均具备了不同的特点和优势,具体如下:1.好氧生物处理技术众所周知,生物制药厂废水主要以高浓度有机废水为主,采用好氧生物处理技术进行废水处理,需要在有氧环境下方可进行生物代谢,经过生化反应,逐级释放能量,进而实现对有机物的降解,该技术属于稳定且无害的处理技术。好样生物处理技术,涵盖着多种技术,常用的有生物膜法、生物接触氧化法、活性污泥法以及加压生化法等。2.厌氧生物处理技术厌氧生物处理技术在生物制药厂高浓度有机废水处理中的应用非常广泛,但是需要指出的是,单独应用厌氧生物处理技术处理后的废水,仍有较高的COD,因此需要配合好氧生物处理技术进行后处理。在应用厌氧生物处理技术的过程中,需要借助高效厌氧反应器方可进行,例如,复合式厌氧反应器以及上流式厌氧污泥床反应器等,方可达到良好的废水处理效果。3.厌氧-好氧组合处理好氧生物处理技术和厌氧生物处理技术,两者之间有着不同的优势及劣势。应用厌氧处理技术能够实现对高浓度、高负荷有机废水的处理并回收,降低运行耗能,但是整个过程的操作及管理存在较高的难度和复杂性,出水COD仍较高,无法达到排放标准。应用好氧处理技术处理废水,需要对原废水进行稀释,并且会消耗大量的能源。为保证达到更加理想的生物制药废水处理效果,可以将好氧处理技术和厌氧处理技术融合,实现对生物制药废水的高效、高质量处理。在具体应用中,需要按照前处理—厌氧生物处理技术—好氧生物处理技术的顺序进行处理,保证废水处理的有效性。

(二)物化处理技术物化处理技术,在当前生物制药厂废水处理中也起到了一定的作用,在应用的时候需要借助物化处理技术作为生化处理的处理工序。现阶段,物化处理技术的应用,主要包括膜分离法、吸附、离子交换等。

(三)化学处理技术在应用化学处理技术的过程中,需要借助试剂方可展开试验,如果试剂使用不合理,则极易导致水体二次污染。基于此,在应用该技术前需要进行实验研究。常用的化学处理技术现主要包括化学氧化还原法、深度氧化技术以及铁碳法等。

三、某生物制药厂废水处理技术的实践应用探讨

以某生物制药厂废水处理为例,利用好氧生物处理技术———生物膜法展开对高浓度有机废水的处理,验证其处理效果。调查显示,该生物制药厂在生产运转中的污水排放量为每天160m3,废水污染物为氨氮、悬浮物质等等,废水pH值为6.0~9.0。

(一)生物制药废水处理工艺流程生物制药厂废水中污染物种类多,应用好氧生物处理技术———生物膜法进行处理,首先需要进行预处理,和将冲洗废水、水环泵水和废气吸收液同时输送到氧化调节池中,然后将适量的氧化剂加入池中进行化学反应,应结合氧化池的融合来对氧化时间进行合理化的控制。通过化学反应,将反应不充分的原料、产物和副产物进行解毒,断开内部结构链,提升B/C。该生物制药厂在药物生产中,采用的是间断式的生产模式,所排放的废水的水质及水量存在诸多的不确定因素,在这种情况下,应在调节池当中进行均质,避免大量悬浮颗粒的产生。可以将曝气装置设置于池底部,然后通过空气搅拌的方式避免池底出现大量沉淀。除此之外,还需要定时定期的清理隔油区,并对杂质进行无害化处理,避免造成污染。其次,在完成水质、水量均质工作后,需要将废水引入到初沉池中,然后在初沉池当中加入适量的絮凝剂和还原剂,通过这样的方式,去除掉废水当中的固体悬浮物和大分子化合物,降低生物处理负荷,最后需要及时将污泥排放到浓缩池中。再次,高浓度有机废水在经过沉淀后,利用泵将其引入到复式兼氧池中,依靠局部微氧工艺和厌氧水解酸化工艺展开进一步的处理,废水处理中,复式兼氧池具备良好的抗负荷冲击效果,并且能够有效的去除掉化学需氧量,甚至能够实现对好氧环境下无法降解的有机物的分解,通过水解酸化菌反应,提升废水的节生化性,有效降解高浓度废水中的有机物。最后,利用复式兼氧池完成对高浓度有机废水的处理工作后,需要继续将废水输入到二沉池中,在进行充分的沉淀后,输入到A/O池中进行硝化反应和反硝化反应,逐一清理掉废水当中的氨氮等物质。接着利用微生物的生命活动,促使有机污染物进行氧化反应,最终将其分解成为稳定性较强的无机物。在整个操作中,应严格地按照A/O工艺条件展开操作。为避免出现突发事件,降低废水处理中对于周边环境所带来的影响,非常有必要增设一个事故池。

(二)好氧生物处理技术———生物膜法的应用效果该生物制药厂废水处理30天实现满负荷运转,45天后出水符合国家污水排放以及标准,90天后符合环境监测站中的验收标准,可以看出,该生物制药厂的废水处理效果是非常理想的。本次试验中,将好氧生物处理技术———生物膜法应用于生物制药厂废水处理中,取得了良好的效果。具体来说,主要体现在以下几个方面:首先,该工艺技术有着良好的耐冲击负荷力,在固定床式酸化水解池中,充分发挥出其吸附作用,能够达到更加理想的负荷处理效果。并且水解菌挂膜速度较快,和厌氧处理方式相比较而言,具备更快的水解反应速度。其次,在上升流速、反应时间方面较为理想,在水解产酸时期依然能够有效控制生物反应,避免了甲烷化现象的发生,同时也无任何H2S、CH4生成,极大地提升了可生化性能。再次,应用好氧生物处理技术———生物膜法进行高浓度废水处理,能够实现对污泥产生量的有效控制,最大限度地避免污泥膨胀现象的发生概率,同时也更好地保证了出水质量。最后,好氧生物处理技术———生物膜法最主要的应用优势就在于有着较高的废水处理效率,在这其中,CODcr、BOD5去除效率均在标准范围内,出水基本满足生活杂用水需求,实现了对废水的回收再利用,避免了资源的浪费及污染。

四、结语

综上所述,当前随着生物制药企业的快速发展,所引发的废水污染日益严重,生态环保可持续发展背景下,做好生物制药企业废水污染处理工作具有重要的现实意义。在生物制药厂废水污染处理中,要合理应用生物处理技术、物化处理技术以及化学处理技术,充分发挥每一项技术的功能作用,达到最佳的废水处理效果,降低废水处理成本,实现清洁化生产,促进生物制药企业的可持续发展,同时也保证社会稳定发展。

参考文献:

[1]穆春芳.制药废水处理技术研究和难降解污染物的溯源分析[D].长春:东北师范大学,2018.

[2]沈耀良,王宝贞.废水生物处理新技术-理论与应用(2版)[M].北京:中国环境科学出版社,2016.

[3]戴启洲,蔡少卿,王家德,等.臭氧_生物法处理制药废水[J].中国给水排水,2018(10):122-125.

[4]陈宏雨,任晓明,张玮,等.生物制药废水处理回用工程实例[J].水处理技术,2017(05):130-133.