公务员期刊网 精选范文 数学建模心得范文

数学建模心得精选(九篇)

数学建模心得

第1篇:数学建模心得范文

[关键词] 建模教学;初中;有效策略

初中数学新课标明确指出,要加强中学生的应用能力,在此背景下,数学建模能力被越来越多的教育者所重视,在初中数学教学中发挥着越来越重要的作用.

从教学角度分析,数学建模的教学过程能够为学生提供自主的学习空间,重在培养其应用意识,学会运用数学的思维方式去解决实际问题,获得适应社会生活所需的基本思想方法和技能. 那么该如何构建初中数学建模教学呢?

培养建模意识,树立信心

数学建模的关键是要将现实问题转化成课堂模型,迅速整理数据并能简化现实问题. 与传统数学模式相比,建模教学的题目信息量较大,数据较多,数量关系复杂且隐蔽.

综观近年来的中考试题,数学建模应用题的分布越来越广泛,在函数、方程、统计概率、不等式中都有所呈现. 而中考题目的信息量也较为复杂,有文字语言、符号语言,还有一些图形语言,相互交错的数据混淆了学生的视野,使其难以成功建模.

根据学生在建模学习中的问题,笔者认为,首先是自信心问题. 因为缺乏信心,无法形成良好的心理品质,学生遇到数学实际问题容易惧怕,不敢放手钻研. 该如何引导呢?教师应从简单应用题的解决入手,引导学生树立解应用问题的信心.

现行教材提供了很多富有生活含义的建模模型,如方程和不等式就是刻画现实世界数量关系的数学模型. 再比如,函数也是有关数量变化规律的数学模型. 针对现实生活的变量问题,都可以转化为函数极值问题进行建模处理,关键是教师要有建模强化意识,培养学生的信心. 如方程教学中,可先引入如下生活现实问题.

例1?摇 某凳子的标价为132元,若降价为9折出售,获利10%,求凳子的进货价.

因为提供了方程的解题模板,建立了降价问题的处理意识,借此,教师可以继续深入引导. 于是我又进一步给学生设置训练题,以加深建模意识.

例2 甲、乙两车间去年计划完成税利共720万元,甲车间完成了计划的115%,乙车间完成了计划的110%,甲、乙共完成税利812万元,求去年这两个车间各超额完成税利多少万元.

在这道题中,要让学生建立如下方程组的解题模型:x+y=m,ax+by=n.

解答?摇 设去年甲、乙两车间计划完成的税利分别为x万元和y万元,根据题意,得x+y=720,115%x+110%y=812,解得x=400,y=320. 所以甲车间超额完成税利400×15%=60万元;乙车间超额完成税利320×10%=32万元.

从这里可以看到,教师可以不改变数学背景和数据,也不改变方程组,只需要和生活挂钩即可培养学生的建模思想.

通过这些简单的题目,学生成功建模后会产生自信心,并对建模思维有所了解,这为进一步解决数学问题奠定了良好的心理基础.

强化信息采集练习,提高数据运

用能力

建模试题的最大特点也即最鲜明的特点,就在于其信息量较大,文字较多,术语较复杂. 对于初中生来说,有许多模糊的概念性背景,如果无法在短时间内接收到这些信息和数据,并尽快进行吸收和理解,将会无法成功建模. 对此,教师就要在教学中多培养学生的抽象信息能力.

初中阶段正是大量接收信息刺激的最佳时期,初一教材中就有很多诸如商家打折、积分换购等生活问题,如果教师通过适时引导,就能成为建模思想的背景,进而刺激学生对数学应用问题的敏感度,使其对各种学科相关问题给予相关的数学思考.

笔者认为,可以在建模教学中多引导,通过以下方面提高初中生解决问题的能力.

1. 抓准重点字、式等

不等式是建立数量关系不等的模型. 对于初中生来说,建立不等式模型有利于其解决社会生活,如估算产量、核价、盈亏分析等问题,并能通过隐含的数量关系,进行不等式(组)转化求解.

例3 某化工厂制定明年的生产计划,有以下数据:(表一)

请根据数据决定该厂明年可能的产量.

这是根据不等式的建模来解决的实际应用问题. 题目数据众多,数量关系纷乱复杂,学生如果不能冷静地深入寻找,根本无法解答. 所以教师应引导学生耐心读懂题目,从中找到有用的数据关系,分析出与明年产量相关的要素:

(1)工时:不应超过200人的总工时.

(2)销量:至少80000袋.

(3)原料:不应超过可能供应数,据此可以建立如下不等式组(其中x为明年的产量):

4x≤200×210020x≤(800-200+1200)×1000x≥80000

通过训练学生对数据的梳理,使其能够建立模型,获得解决问题的能力.

2. 借助表格完成数据,理解转化问题

对于一些复杂的数量关系,可以借助表格完成数据的转换.

例4 某地现有耕地1000公顷,规划10年后人均粮食占有量比现在提高10%,增加产量22%,如果人口年增长率为1%,那么耕地每年至多只能减少多少公顷(精确到1公顷)?

(粮食单产公式为:总产量/耕地面积,人均粮食占有量公式为:总产量/总人口数)

在本题中可以看到,数量关系较多,有现在耕地面积、人口数等,也有10年后的耕地面积、人口数等. 如何才能找到等量关系,建立清晰的关联呢?可以通过列表的方式,让学生梳理数据,建立联系(其中x为每年耕地减少的公顷数,如表二)

注重学生的实践活动,提高数学

建模能力

新课标将实践与综合应用设定为一个学习领域,这个领域的提出,对于提高学生解决问题的能力具有重要意义. 而学生建模能力的培养,正需要学生从实际问题入手,将其转化为数学模型经验,并着手进行培养. 那么,该如何培养学生的时间和综合运用能力呢?显然,只有带领学生不断参与实践,将问题情境语言转化为数学符号,才能让学生有直观的建模概念,并加强建模意识.

例如,在银行利率问题教学中,学生无法理解利率和本金,也无法区别不计复利与计复利,这让我很伤脑筋. 想来想去,我最后给学生布置了一道实践作业,即要求学生和家长一起到银行实地了解情况,和家长探讨如何才能让存款获得最大收益,并一起讨论、交流,再加上自己的计算. 通过这些实践,学生终于弄明白有关计复利及不计复利的含义,并能够和现实挂钩. 再如,学习统计知识以后,正好举行数学竞赛活动,出现了一些可以拿来探究的实际问题,两个班级的竞赛结果:(表三)

两个班的平均得分都是80,那么如何才能判断哪个班的成绩较好呢?要充分说明自己的理由.

根据这个实际问题,学生从统计入手,展开探究,通过实际计算,根据方差、中位数等概念,建立建模思维,并能真正理解这些概念.

解答?摇(1)从众数看,甲班成绩较好.

(2)从中位数看,甲班成绩较好.

(3)从方差上看,甲班成绩较好.

(4)从统计表看,高分段成绩乙班较好.

第2篇:数学建模心得范文

(成都师范学院数学系,四川 成都 611130)

【摘要】本文总结了笔者组织开展数学建模培训以及组队参加全国大学生数学建模竞赛的实施方案和培训经验总结,并结合大学阶段的高等数学教学,探讨了如何更加有效的开展大学数学建模竞赛并将竞赛培训的有关经验应用于大学数学教育之中。

关键词 数学建模;数学模型;竞赛培训

全国大学生数学建模竞赛是由教育部主办的全国高校规模最大的课外科技活动之一。本项比赛目的在于激发学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。我校每年11月组织学生报名,随着比赛的逐年举办,学生的热情也是日渐高涨。通过近几年的培训参赛,我们再历年的比赛中取得了一些成绩,同时也有更多经验值得总结探讨。

1 领导高度重视建模竞赛活动

此次建模竞赛中取得的成绩和学校、教务处、学生处以及数学系等领导的重视是密不可分的。数学系成立了数学建模竞赛工作小组组织安排此次竞赛活动,学校以及教务处给予此次活动更方面的支持,亲自动员并多次亲临现场看望学生,学生处领导积极解决暑期学生生活方面的各项苦难,数学系领导亲自参加竞赛的培训工作,细心了解学生及培训教师的情况并积极解决,使得此次活动能顺利圆满的进行。

2 选拔优秀学生组队培训和竞赛

数学建模竞赛的主角是参赛学生,选择参赛学生的成功与否将直接影响到参赛成绩。我们于每年11月启动了全校规模的报名活动,为使学生更好的了解数学建模以及数学建模竞赛,数学系指导教师在报名之前进行了“走进数学建模”主题讲座。学生报名热情高涨,积极半报名参加。

选拔分为预赛和复赛两个阶段。主要围绕以下三个方面选拔参赛队员:首先要对数学建模有浓厚的兴趣;其次,要有创造力,勤于思考,用于创新并且有扎实的数学功底,能熟悉操作计算机;最重要的还要有团队合作意识。经过预赛以及复赛共选拔出30-40名同学进入竞赛培训名单。

3 科学系统的培训方法

此次竞赛培训共分两个阶段进行。第一阶段从每年3月至月,培训教师利用周末时间向学生讲解数学建模的一些基础知识,包括:Matlab的使用;学生欠缺的知识(如运筹学,概率统计等);常用数学模型(如规划模型,微分方程模型,回归模型,层次分析法等)。经过第一阶段的培训,学生已经具备的初步的数学建模能力,具备了参加数学建模竞赛的基础。

第二阶段从8月至9月,数学系对参赛学生进行了暑期培训。经过第一阶段的培训,有33名同学进入了暑假培训班。按照比赛要求,每三人一组,分本科专科组,共十余队,其中本科组四队,专科组七队。由于比赛在9月初进行,暑期培训就显得尤为重要了。由于我校暑假的特殊情况,学生的食宿等各项问题都需解决。数学系领导及时与学生处以及各部分协调,解决了学生的生活困难,保证了培训的顺利进行。在本阶段培训以模型的案例分析为重点,主要从近年竞赛真题出发,通过对试题的分析,讨论,加深对数学建模的认识,同时学习了竞赛论文的写作规范。为了让学生更好的准备比赛,数学系还邀请了四川省数学建模竞赛阅卷专家来校对培训教师以及学生进行指导。通过本阶段的学习,学生已经具备了参加数学建模竞赛的能力。

由于数学建模竞赛需要大量用到计算机,数学系在培训期间对学生全天开放数学系实验室,并有培训老师现场指导,以便学生更好的学习和练习数学建模的相关知识。

4 组建一支专业的培训教师队伍

在数学建模培训中,培训教师是核心。指导教师保证培训效果和竞赛成功的关键因素。为此,数学系从本系老师中抽调了专业教师组成指导教师组,制定培训方案,组织学生培训。从3月份集训开始,到9月份比赛结束,指导教师放弃了周末以及暑假的休息时间进行培训。尤其是暑假近一个月的培训,在高温的情况下给学生上课,所有的老师都是任劳任怨,从未有过一个老师争报酬,讲价钱。为了最后的比赛,和学生一起在暑期奋战。

5 重视参赛工程的指导

在学生参赛过程中,指导教师的及时指导是学生完成竞赛的保证。主要体现在以下方面:一是做好参赛学生的心理指导,比赛是在连续72小时内完成的,并且要和同组的队员合作,对学生的心理和生理都是极大的挑战。有很多学生中间会有放弃的心理,此时需要指导教师的鼓励和关心。指导教师细致的思想工作,在整个培训过程中不断强调团队合作的重要性,这些都是学生顺利完成比赛的保证。二是做好论文细节方面的指导。论文格式的规范与否与能否获奖息息相关。在竞赛的最后阶段,指导教师会提醒学生注意论文格式,并亲自帮学生检查论文格式是否符合要求,论文题目、摘要、

关键词 是否合适,

参考文献格式是否正确,论文是否完整等各方面问题。这些细节是论文是否取得好成绩的关键。为了更好的指导学生参加比赛,数学系在比赛期间抽调了十余名教师在比赛三天中对学生全天进行指导。

6 竞赛培训与大学数学教育相结合

数学建模竞赛想取得优异的成绩不仅要依靠竞赛培训,更重要的是学生要对数学产生浓厚的学习兴趣。现在,很多学生对数学兴趣不高,主要是由于学生对所学到的知识无法学以致用。数学建模恰好是一个数学知识的实际应用,在这个平台上,大学生们不仅仅是运用数学方法和计算机技术解决实际问题,更重要是锻炼了他们分析问题、解决问题的能力。因此,经过近几年的竞赛培训,我们总结了建模中一些和高等数学密切相关的实例,在高等数学的教学中融入相关知识,使学生体会到数学的真正乐趣。同时,在线性代数以及概率论与数理统计等课程中融入相关数学软件的应用,增强知识的应用性,同时为数学建模打下良好基础。

第3篇:数学建模心得范文

关键词:三个层次;培养;建模能力

高中数学教学加强应用能力的培养已获得全社会的共识,教育部2003年颁布的《普通高中数学课程标准(实验稿)》把发展学生的数学应用意识作为课程的基本理念之一,要求高中数学大力加强数学应用和联系实际,增强学生的应用意识,扩展学生的视野。作为解决实际应用问题的主要能力――建模能力也逐渐被高中数学教学所重视,对建模能力的研究日渐深入。这里我们以“货币时间价值模型”的建立为例,分析数学建模能力的三个层次,探讨在高中教学中如何培养学生的数学建模能力。

一、数学建模能力的三个层次

数学建模能力指对问题做相应的数学化,构建适当的数学模型,并对该模型求解返回到原问题中检验,最终将问题解决或作出解释的能力。需要说明的是,问题可以是现实的应用问题,也可以是纯数学问题;可以是常规,也可以是非常规的;可以是封闭的,也可以是开放的。荷兰著名数学家汉斯・弗洛登塔尔认为,公理化、形式化以及模型化等这些发展数学的过程统称为数学化,即数学化就是运用数学的思想方法来分析和研究客观世界的种种现象,并加以整理和组织的过程。数学模型是现实世界当中某一类运动变化过程及结构,一种模拟性的数学结构,是对现实模型理想化,是一种科学的抽象过程。

为了探索数学建模能力的结构层次,我们设计了构建货币的时间价值模型逐层深入的3个问题在我校(地级市一中)的高一、高二、高三各选2个班级加以测试。

1.问题1:初始本金a元,年利率为x,试探求n年后本利和An公式。

高一年级2个班108人中正确导出复利公式(模型)有96人,正确率为88.8%。在课本没有涉及金融投资知识,教师也没有讲过该公式的前提下,能有这么高的正确率出乎笔者的意料。通过座谈发现一部分学生是通过课外阅读记忆获取该模型公式;另一部分人则通过存款观察并通过对本问题思维运算获得的。而没有得出公式的学生既有语言理解能力上的不足,也有缺乏想象创造力的错误,当然也有数学抽象归纳能力上的欠缺。笔者认为数学建模能力是有结构层次的,初层结构是由观察力、阅读力、想象力、思维能力等基本能力组成,其中以思维能力为核心。

2.为了探索建模能力是否存在第二层次,对问题1进行深化处理得到问题2:如果利息不是一年结算一次,而是一年结算多次,初始本金a元,年利率为x,试探求n年后本利和Bn公式。

高二年级2个班111人中正确导出一年结算m次,有52人,正确率为46.8%。其中较为典型的解法是,首先对实际问题进行数学化处理,令利息一年结算m次,n年后共结算mn次,再进行建模解模的探析,联想每年结算一次复利公式,得到初始猜想,在赋值上发现错误,对照有,从而将模型调整为,并由数学归纳证明结论正确。由此可以看出,正是在初层结构的基础上,学生通过数学化达到构建模型和求解模型的,将实际问题归结为数学模型,因而笔者认为数学建模能力有第二层次,即中层结构(具体能力层)问题的数学能力,建模解模的实践能力。

3.为了继续探求数学建模能力的结构层次,笔者对问题2进行抽象形式化处理得到问题3:试对问题2进行分析,从中你能得到什么样的投资结论。

高三年级2个班109人,仅16人能基本回答正确,正确率约为14.7%,这从一定程度上说明当前的高中学生缺乏应用问题的训练,尤其是问题的数学模型不止一个时就会束手无策,教学中应加大数学建模培养力度。典型的解法是立足于问题2的模型,又构建了问题的新模型――二项式模型,展开

通过逐项比较不难得出,即ym随m单调递增,又得到结论:m越大,越大,即每年结算利息的次数越多,银行付出的本利和越多,对储户越有利(银行应避免该状况发生)。学生对上述问题的解决是在中层结构基础上,交叉运用了逻辑思维和运算分析最终上升为一种问题解决的综合能力。这应该是数学建模能力的归宿――高层次结构。

二、从三个层次在高中数学教学中培养学生的数学建模能力

1.既然数学建模能力基础(初层)是由诸多能力因素构成的,因此日常教学中就要有意识地进行针对性的渗透培养。构建系列有相当针对性的现实应用问题供建模教学使用,当然问题一方面要体现建模过程的特点,即问题的数学化,抽象简化,建模求解,检验修改(循环迭代)的过程;另一方面要避免传统文字应用题的通病――已将数学化过程甚至建模过程完成,问题不含多余干扰信息,条件不多不少,目标指向清楚,只需设出未知数列等式或不等式就可得到问题的解。

我们仍以“货币时间价值模型”为例,教学中通过下面系列问题训练是培养学生的数学建模能力的基础。

(1)以每股8.15元购进股票10万股,一年后以9.05元抛售,该年银行月利率为0.2%,按月计算得利,请判断该投资行为是否合理?

(2)某人将全年固定收入的结余部分,每年年终存入银行,银行年利率为3.8%(计复利),计划五年后不再工作,而储蓄所得利息恰等于现在每年的开支,问所存金额为其年收入的百分比。

(3)某人年初向建行贷款20万用于购房,年利率为7%,按复利计算,若这笔贷款分15次等额归还,每年还1次,15年还清并以贷款后次年初开始归还,问每年应还多少钱?

(4)某公司为了增加流动资金推出新的促销方式,将原售价50万元的房产用新方式出售,即该公司与买方签订有银行担保的书面合同,买方一次性支付该公司60万元,不但能得到房产权,而且该公司履行满15年一次性返还买方60万元,试问买方的在新的促销方式中可少支付多少万元,按银行五年期存款的年利率为5%作计算基准,15年可以连续存三个五年期。

需要注意:数学建模中的模型背景要尽量简化,专业术语要较少,问题要有趣味性,应易激发学生的好奇心和兴趣,利于学生主体参与和创造意识的培养。现行课本中有许多现成模型需要挖掘重视,如,等比数列求和公式(上述问题中有诸多涉及),只要教学中充分挖潜,作不同的导向,就可演变成一个好的建模问题,这是建模教学中宝贵的问题源,要高度重视。

2.应该承认数学建模能力中层结构的地位是决定性的,它既联系着初层结构,又影响高层次结构的完成,教学处理极为关键。笔者认为在教学中应注意两个方面:(1)突破阅读理解关。现实应用问题的数学化和建模过程取决于学生能通过阅读理解将文字语言转化为数学符号语言,用数学式子表达数量关系并自觉将应用问题的数学化过程按理解的深度与广度结合体的感觉、知觉、记忆、思维等特点,组成一个具有内部规律的整体――应用问题的认知结构时才能合理完成。这里阅读理解往往在很大程度上制约数学化的过程。美国阅读心理学家史密斯认为阅读心理有四个逐步深入的层次――字面的理解、解释、批判性阅读、创造性阅读,这里实质也是数学建模能力培养的一个组成部分,教学中要培养学生具有较高的阅读联想、阅读思维、阅读情感素质。(2)加强学生的运算(特别是近似计算)能力的培养。构建模型带有很大的灵活性和实用性,需要较高的运算素养。教学中应力戒将问题的模型构建完毕就不屑一顾的做法,对学生而言有时候解模往往会力不从心。例如,对前面列举的问题3,有学生这样获取模型:设贷款b,每年等额归还a元,第一年后欠款b-a,第二年后欠款,第15年后欠款。笔者在高二年级2个班111人中能正确运算得到结果只72人,不能合理运算已阻碍学生建模能力的形成,教学中要下大力气突破。

3.数学建模能力的终极是一种综合的问题解决能力,因而建模教学中要注重学生思维活动的发散性和创造性的培养,促进学生在同化――顺应的整合过程中形成合理的新建模结构,突出学生的多种思维指向作用,而不是一味地纳入教师的思维框架中,避免抑制学生建模能力中创造能力与主体意识的培养。由于建模能力形成的长周期和培养点为多角度、多渠道、多观点、多层次,寻求建模能力的解决点,以完成知识为载体、思维为核心、能力为体现的三者和谐统一。例如,从问题1出发鼓励学生思维触角立体式搜索,完成问题(1)~(4)的解决,并可将问题迁移到债券的价值问题得到系列模型:设n年期债券,存款年息利率为x,每年付利息a元,面值为A元,则债券价值为Y=a+A,其中,为使债券面值与现值一建立数学模型不完全是为了解决模型的原问题,更有意义的还在于解决具有原型特征的其他许多实际问题,例如上述模型,我们可以建设性解决以下几类问题:现值Y、利率x、面值A的确定等,这样教学才会有利于学生形成建模能力的最高层次。

数学建模能力的结构层次是相互联系的,下层为上层基础的同一体,层次上有时不能绝对区分,是相互渗透的,但只有搞清楚数学建模能力的结构层次,教学中才能有的放矢地培养,学生的数学建模能力才能从本质上得到提高。

参考文献:

[1]郑庆全,汪文龙,田玉杰.数学与数学建模:培养创新能力的内容载体和实践载体.数学教学研究,2010(12).

第4篇:数学建模心得范文

[关键词] 建模;理解;培养;意识

缘起

2012年9月起,《义务教育数学课程标准(2011年版)》(以下简称《标准》)正式实施,《标准》自然成为相关教育部门、教育专家特别是一线教师关注的焦点. 《标准》提到10个核心概念:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念、应用意识、创新意识. 这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标. 所以教师应解读核心概念,落实课标教学. 笔者曾对核心概念做了重点学习,也曾将自己的理解认识和实践探索撰写成文:《解读好核心概念,落实好课标教学――例谈〈标准〉课标中“几何直观”的理解》等发于《中学数学杂志》2012年第10期.

《标准》中的建模教学

《标准》在实验稿课标的基础上正式提出了小学阶段模型思想的基本理念和作用,更加明确了模型思想的重要意义. 数学课程的设计在呈现作为知识与技能的数学结果的同时,应重视学生已有的经验,使学生体验从实际背景中抽象出数学问题,构建数学模型,寻求结果,解决问题的过程,并对数学模型和模型思想的要求更加具体化,强调模型思想的建立是学生体会和理解数学与外部世界联系的基本途径. 这不仅表明了数学的应用价值,也明确了建立数学模型是数学应用和解决问题的核心,应从小学数学就成为关注点.

《标准》中10次提到建立数学模型和模型思想,指出:义务教育阶段数学课程的设计,要充分考虑本学段学生数学学习的特点,符合学生的认识规律和心理特征,有利于激发学生的学习兴趣,引发学生的数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题,构建数学模型,寻求结果,解决问题的过程. 模型思想的建立是学生体会和理解数学与外部世界联系的基本途径. 建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题的数量关系和变化规律,求出结果并讨论结果的意义. 这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识. 课程总体目标提到经历数与代数的抽象、运算与建模等过程,掌握数与代数的基本知识和基本技能. 学段目标中提到通过代数式和方程等表示数量关系的过程,体会模型的思想,建立符号意识;能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型;结合实际情景,经历设计解决问题的方案,并加以实施的过程,体验建立模型、解决问题的过程,并在此过程中尝试发现问题和提出问题. 《标准》中还强调:设计试题时,也应该关注并且体现标准的设计思路中提到的模型思想等核心词. 数学教材内容的呈现应体现过程性,反映数学知识的应用过程,教材应当根据课程内容,设计运用数学知识解决问题的活动,这样的活动应体现“问题情境――建立模型――求解验证”的过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想,积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识.

建模教学的思考

伴随着实验稿课程标准的实施,历经十多年的课改,中学数学加强应用能力的培养已获得全社会的共识,作为解决实际应用问题的主要能力――数学建模能力也逐渐被教育工作者及一线教师所重视. 从教学的角度来看,笔者认为,建模是一种新的学习方式,它为学生提供了自主的学习空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识,有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力. 而从实质上讲,数学建模教学过程不是简单的外部知识和内部知识的叠加,而是一个师生之间反复交流、相互作用的过程. 所以影响数学建模教学的主要原因有两个方面:教学双边,学生因素和教师因素.

(一)学生因素

1. 数学建模信心不足

数学建模是用数学知识和数学方法解决实际生活中各种各样的问题,是一种创造性的劳动,涉及各种心理活动. 现实中许多学生遇到数学实际问题时,感到茫然,不知从何下手,产生害怕数学建模题的心理.笔者认为,造成学生对解建模题没有信心的主要原因是缺乏数学建模成功的体验. 解决这一问题的最好办法是让学生从简单应用题开始,树立信心,经历理解简单情境、转化语言、选择模型、解决问题等主要过程. 通过建模解简单应用题,循序渐进为复杂题目的成功建模打下良好的心态基础. 比如,遇到相对叙述复杂的实际问题:

小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题进行了认真探索. 如图1,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时点B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题的解答补充完整:

(2)解完“思考题”后,小聪提出了如下两个问题:

【问题一】在“思考题”中将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?

【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.

对于(1),这种明显的方程模型学生求解起来很轻松,但对于(2),要根据题意建立勾股定理模型,通过计算验证它是否符合题意,并在假设结论成立的条件下,建立一元二次方程模型,看看方程是否有实数解,这就有难度了,需要学生在平时的学习中循序渐进提高建模信心和能力.

2. 数学抽象能力较弱

在传统的数学教学中,呈现在学生面前的习题总是数据简单、语言精练、学生能一目了然知道已知条件与所求的问题. 而数学建模教学过程中,呈现在学生面前的是一个现实生活中的实际问题,虽然文字贴近现实生活,但是题目相对较长,数据相对较多,信息量较大,数量关系复杂并且有时显得隐蔽,这就要求学生经历一个阅读理解的过程. 面对冗长的非形式化的素材,许多学生感到困惑. 数学建模的关键是第一步骤,即将现实问题转化成数学模型,学生必须整理数据,简化现实问题. 这就需要学生能从繁杂信息中提炼出抽象的有效信息,并对各项信息的内在关系进行分析,选用合理的数学模型解决问题. 比如问题:

温州享有“中国笔都”之称,其产品畅销全球. 某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图2所示. 设安排x件产品运往A地.

(1)当n=200时,

①根据信息填表:

②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,有哪几种运输方案?

(2)若总运费为5800元,求n的最小值.

解决此问题时,学生面对大量的信息,可能会丈二和尚摸不着头脑,此时,应引导学生逐步学会找准“不多于”“不超过”等关键信息,进而选用不等式模型解决问题,当然,这需要学生分清每种模型的特点以及必要的抽象能力.

3. 缺乏实际问题转化数学模型的经验

分析近年各省(市)的中考题目,各地数学建模应用题的呈现形式是多种多样的,有的以函数显示,有的以方程显示,有的以图形显示,有的以不等式显示,有的以概率统计显示,还有其他各种形式,但都从生活中的实际问题出发,创设情境. 例如有一道数学题:

某汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明,当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.15万元时,平均每周能多售出4辆. 如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.

(1)求y与x的函数关系式,并在保证商家不亏本的前提下,写出x的取值范围.

(2)假设这种汽车平均每周的销售利润为w万元,试写出w与x之间的函数关系式.

(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?

该题的问题情境就是汽车销售的利润问题,目的是考查学生利用函数模型来解决实际问题的能力. 学生需要将“问题情境”的语言转化为数学的符号语言,用数学式子表达关系. 这就需要知道进货价、销售价、销售利润的含义,才能很好地解决问题.

中考中的数学建模题有时文字语言、有时符号语言、有时图形语言,相互交织,这就对学生的阅读理解和逻辑思维能力提出了一定的要求,但学生往往由于生活阅历积累不够,对问题的背景感觉陌生,从而产生畏难情绪,难以成功建模.

(二)教师因素

1. 对数学建模教学的理解存在偏差

数学建模教学是一个较新的事物,很多数学教师对此没有学习和接触,因而,数学教师对数学建模教学的理解参差不齐. 比如,有的教师没有体会到数学建模教学是一个循序渐进的过程;有些教师认为,数学建模与解数学应用题无关;而有的教师认为数学建模就是解数学应用题. 对数学建模的这些片面性认识给数学教师开展数学建模教学带来了很多困难.

2. 角色的转换不到位

数学建模教学的基本特点要求教师选择合理的建模问题,精心创设问题情境,引导学生主动探索,发挥他们的想象力和创造力,并为学生提供参考和建议等. 数学建模是促使学生“从做中学”的一种重要方式,在建模教学活动中,教师要放手让学生去“做”,并且给他们自主选择解题方法的权利.

不少教师认为建模问题一般都较为复杂,侧重于综合性知识、应用性知识,怀疑中学生的解题能力,于是,将自己的解题过程讲解给学生,失去了建模教学活动的意义. 在建模教学活动中,教师给学生以适时的引导是必要的,但主要的工作应放手让学生去做,要相信你的学生. 教师是建模教学活动的组织者、参与者,而不是单纯的示范者、传道者. 因此,数学建模教学必将对教师的传统角色提出挑战,导致教师在教学理念、教学行为等方面发生变化.

3. 数学素质有待提高

开展数学建模教学,需要教师广博的知识和较高的业务素质. 教师除了要了解数学科学的发展历史、动态变化,学习必要的数学建模理论外,还要探究如何把数学知识应用于现实生活,学会从教材中挖掘数学建模教学的素材,还要注意加强数学与其他学科的联系. 俗话说“站得高,看得远”,教师还要有较高的数学专业知识,特别是应有高等数学知识,以便能用高观点看待数学实际问题,这样更容易发现现实中的建模素材. 在现实中,教师应激发学生的好奇心、求知欲,培养学生的探索能力,为学生创造一个活跃的学习空间. 除此之外,教师还要加强建模教学方法研究,理解数学建模的重要思想和基本方法,把数学建模意识和培养学生的创造力统一起来.

4. 改变对学生的评价方式

数学建模教学为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识,有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力. 而在数学建模教学过程中,有的教师对学生进行数学建模活动的评价没有改变,不注重过程,而只看结果. 如果学生最终没能解出正确答案,教师则对教学效果不满意,这都会影响数学建模教学的开展.

学生是数学课堂教学的主体,教师是学生数学活动的组织者、引导者与合作者. 教师要正确地认识学生的个体差异,因材施教,使每个学生都在原有基础上得到充分发展;要关注学生的学习过程,只有关注过程,教师才可能深入学生发展的进程,及时了解学生在发展中遇到的问题、所做出的努力以及获得的进步,这样才有可能对学生的可持续发展和提高进行有效指导与评价,促进发展的功能才能发挥作用. 与此同时,也只有在关注过程中,才能有效地帮助学生形成积极的学习态度、科学的探究精神,才能注重学生在学习过程中的情感体验、价值观的形成,实现“知识与技能”“过程与方法”“情感态度与价值观的全面发展”. 如果在整个建模教学过程中学生处于一种积极、活跃、兴奋的状态,并由此丰富了学生学习的经验,进而促进学生获取知识和运用知识能力的提高,这样才能达到较好的学习效果.

模型教学的理解

实际上,不少学生或老师对“模型思想”“数学建模”茫然不知,甚至产生畏惧感. 笔者认为所谓“模型”指的是把研究对象的主要特征进行抽象和简化. 模型的价值一方面在于能反映实际问题中我们关心的某些因素,例如,舰艇模型在模型比赛中有真实舰艇一样的外形特征、一样的螺旋桨和一样的马达,能在水中航行,制造技术上也有等同之处. 再如楼房模型,从中可以看出房子的户型和基本构造,能更好地为购房者提供参考. 另一方面,在成本上,模型要比原型低得多,但是舰艇模型不能用于战斗,楼房模型不能用于住人,他们只是提供了一个低成本的、有价值的代替品.

《标准》中提到:所谓数学模型,就是根据特定的研究目的和问题,采用形式化的数学语言,去抽象地、概括地表征研究对象的主要特征、关系所形成的一种数学结构. 再通俗点,数学模型是将研究对象用数学语言刻画出来,对实际问题的解决有启发作用. 在义务教育阶段的数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型.

比如:(1)基本公式,求梯形的面积,通常转化为求“上底、下底和高”的模型、求“中位线和高”的模型或求“两个三角形面积的差”的模型等. 又如,求利润,通常建立售价、成本、销售量、利润这些量之间的等量关系式模型. (2)基本图形,复杂图形由几个简单图形组合而成,建立基本图形的解题模型有利于我们从复杂图形中提炼出基本图形,从而达到化繁为简、逐个突破的目的. 例如,学了“相似三角形”之后,笔者和学生建立了如下五类图形模型(如图3),便于学生归类建模解题. (3)基本辅助线,课本例题和习题为我们提供了很多基本的解题方法,其中一些典型的添加辅助线的方法通过数学建模,为我们分析类似问题提供了思路,如圆中证切线“有交点,连半径,证垂直;无交点,作垂直,证半径”的辅助线模型.

在教学中,我们应抓住这些建模材料,让学生合作探究. 实践证明,学生一旦灵活掌握一个模型,其应用效率很高. “数学建模”就是通过建立模型的方法来求得问题解决的数学活动过程. 通俗地说,建立数学模型的过程就是数学建模,其主要步骤如下:提出问题、分析问题、模型假设、建立模型、求解模型、验证结果、问题讨论. 比如:

如图4,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.

(1)求抛物线y=ax2+bx+c的解析式;

(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

分析解决:(2)求AM+OM的最小值问题时,学生如果平时积累了这样的“模型素材”,很容易化归建立人教版八年级第12章轴对称P42中“求到直线同侧两点距离最短问题”的模型(如图5),进而求解模型,解决问题.

教学实践中,若能将数学及时地与生活实际相联系,加强数学建模思想的教学,将会提升学生的学习兴趣. 数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,因此我们在教学中要不断结合实际追求新知,发现、提出、分析并创造性地解决实际问题. 下面笔者结合几个具体案例说明如何进行模型教学.

1. 结合课本素材,开发建模课程

结合课本素材资源,一是将教材中的问题进行改变,如改变设问方式,变换题设条件,互换条件、结论组成新的建模应用问题;二是针对课本中的背景或有一定应用价值的数学建模应用问题.

例如,在讲“有理数的乘法”时,第一部分就是学习有理数的乘法法则,教材是利用蜗牛爬行提出问题进行实验、探索、概括的步骤来得出法则的. 在教学中,我提出问题:一只蜗牛在一条东西方向的路上爬行,它以每分钟2厘米的速度向东爬行,能否确定它3分钟后位于原来位置的哪个方向?与原来位置相距多少?(学生的答案中包括了全部可能的答案,我又问他们是如何想出来的,并把他们的回答一一写在黑板上)这时,我介绍数学建模的数学思想和分类讨论的数学思想方法,并结合这个问题介绍数学建模的一般步骤:

(1)首先,由问题的意思可以知道,求几分钟前和几分钟后的结果是用乘法来解答.

(2)对这个问题进行适当假设:①如果蜗牛一直以每分钟2厘米的速度向东爬行,3分钟后它在什么位置?②如果蜗牛一直以每分钟2厘米的速度向西爬行,3分钟后它在什么位置?③如果蜗牛一直以每分钟2厘米的速度向东爬行,3分钟前它在什么位置?④如果蜗牛一直以每分钟2厘米的速度向西爬行,3分钟前它在什么位置?

(3)根据四种假设的条件规定向东为正,向西为负,列出算式分别进行计算,根据实际意思求出这个问题的结果.

(4)引导学生观察上述四个算式,归纳出有理数的乘法法则.

这样不仅使学生学习了有理数的乘法法则,理解有理数的乘法法则,而且使学生学习了分类讨论的数学思想方法,并且对数学建模有一个初步的印象,为学习数学建模打下了良好的基础.

利用课本知识的教学,在学生学习知识的过程中渗透数学建模的思想,能够使学生初步体会数学建模的思想,了解数学建模的一般步骤,进而培养学生用数学建模的思想来处理实际中的某些问题,提高其解决问题的能力,促进数学素质的提高.

2. 联系社会生活,强化建模意识

在实际生活中,存在着丰富多彩的数学问题,因此,在数学建模教学中,教师若想培养学生的建模意识,就应善于联系生活实际,引导学生将所学知识应用到实际生活中. 所以,在初中数学建模教学中,教师应为学生创造更多地运用知识的条件,为他们提供更多的实践机会,让学生自然而然地进行知识运用,积极思考、分析与解决实际问题,从而感受到数学在生活中的应用意义.

实际上,在社会生活中,有不少问题都能以构建数学模型来解决,如住房问题、保险问题、储蓄问题、成本与利润问题、用水用电问题、手机收费问题等,这些都是良好的数学建模素材,教师可灵活选取,巧妙融入建模教学中,以强化学生的建模意识. 例如,在讲“不等式的应用”时,教师可联系生活设计问题:

李明买了一部新手机,想入网,其朋友肖亮介绍他用“神州行”卡,其收费标准为本地通话0.4元/分,来电显示与月租费全免;朋友刘军推荐他通130网,其收费标准为15元的月租费,本地通话0.2元/分,来电显示费为6元/月. 李明的亲戚、朋友多数在本地,且他想有来电显示,那么选择哪种更省钱?

解析:设李明每个月的通话时间为x分钟,而话费是y元/月,则有y1=0.4x;y2=0.2x+6+15=0.2x+21. 令0.4x=0.2x+21,解得x=105,即当x=105,y2=y1;当x>105,y1>y2;当x

这样,通过以生活实例为背景来编拟数学应用题,不但能调动学生的学习兴趣,还可让学生体会到数学与实际生活的紧密关系,能培养学生的数学分类讨论思想,强化学生的数学建模意识.

3. 加强实践活动,提高建模能力

教学不应局限于课堂,还可向课外适当拓展延伸,为学生提供更多的实践机会. 同样,在数学建模教学中,课外实践活动也是不可忽视的. 教师可指导学生将所学知识运用到社会实践中,在实践中进一步理解知识、升华知识,提高建模能力.

例如,在有关“利息”的数学知识学习后,教师可要求学生课后根据利率知识算算自家的储蓄利息;在学习“面积计算公式”后,可要求学生算算教室面积,自己卧室、客厅等的面积;为增强学生的数学感知力,可让学生对从家里至学校的间距加以估算,然后按照平时的速度算算所需时间;学习“平均数”后,可让学生课后调查班级学生的身高,算算全班学生的平均身高,等等.

当然,若想提高学生的数学建模与应用意识,不可限定于某一知识点,还需展开综合性学习,进行多方面的活动,以提高学生的数学应用能力. 例如,开展兴趣小组活动时,教师可适时引入哥尼斯堡七桥问题,提出思考问题:一个人如何才能一次性将七座桥走遍,而每一座桥仅走一次,且最终回至原点?若学生经过思考后仍难以解决,教师再帮助解决. 这样,学生不但可体验到模型建立的过程,而且可排除干扰因素,形成数学应用意识.

4. 与时俱进,介绍建模方法

国家大事、社会热点、市场经济中涉及诸如成本、利润、投标及股份制等都是初中数学建模问题的好素材,适当选取并融入教学活动中,使学生掌握相关类型的建模方法,不仅可以使学生树立正确的经济观念,还会为日后能主动以数学的意识、方法、手段处理问题提供能力准备.

例如,根据《关于修改〈中华人民共和国个人所得税法〉的决定》的规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳所得额,月个人所得税按如下方法计算:月个人所得税=(月工资薪金收入-3500)×适用率-速算扣除数. (适用率指相应级数的税率)

某工程师2013年2月份的工资介于5000至8000元之间,且缴纳个人所得税245元,试问这位工程师这个月的工资是多少?

这是一个列方程类的应用题,本题把时下的热点个人所得税问题巧妙地融于其中,不仅使学生从中学到数学建模的方法,也让学生体会了数学的社会化功能.

5. 数学游戏,培养学生数学建模意识

成功的“数学建模”离不开对生活中发生的现象进行细致地观察、认真地记录,运用数学方法对材料进行加工分析,大胆地猜想和不断地提出问题,并加以严密地论证再回到实践中接受检验,不断地修正和完善,从而得出具有较高精度和一定指导价值的结论等重要环节. 显然,在数学建模教学中,实践性处于第一位. 数学游戏有丰富的素材,如幻方、称球、速算、掷骰子等,还可结合教材内容适时提出游戏规则,让学生在做游戏的过程中学到数学知识、方法和思想. 例如,将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中,摇匀后甲、乙二人做如下游戏:每人从袋子中各摸出一个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜. 请问:这样的游戏规则对甲、乙双方公平吗?请用概率的知识说明理由.

6. 跨学科选题,提升学生用数学解决问题的能力

第5篇:数学建模心得范文

关键词:数学建模;案例教学;策略

中学数学建模案例教学的环节是创设实际问题情境,引导学生理解实际情境并将实际问题用数学语言描述出来,进而抽象简化成数学模型,然后利用数学知识求解数学模型解答实际问题,同时检验和完善数学模型,在教学过程中,学生需要借助数学知识、数学思想与方法来分析与解决问题,教师若想在教学过程中不仅重视数学模型知识的教学,而且还想提高学生的数学应用意识和数学思维能力,则需重视教学过程中的理论指导,不断探索有效的教学策略,文章以建构主义理论为指导,通过教学实践与探索,研究得出关于中学数学建模案例教学中应把握好的教学策略。

1 数学建模在中学数学教学中的作用

1.1 什么是数学建模

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。

1.2 数学建模在中学数学教学中的作用

数学建模是中学开展探究性学习的好题材。数学建模包含了合作学习、自主学习和探究性学习的诸多因素和作用。数学建模是提高参与者数学素养的一种很好的形式。越来越多的国内教育工作者都有这样的认识:数学知识的掌握不全是教出来的,而是自己做出来的,数学建模正好是一个学数学、用数学、做数学的过程,它体现了学和用的统一。

2 中学数学建模案例教学的研究策略

2.1 数学建模案例教学应与教学过程有机结合

数学建模的案例教学对教师来说,教师的主导作用体现在通过设置恰当的问题、适时地点拨来激发学生自主探索解决问题的积极性和创造性上,学生的主体作用体现在问题的探索发现,解决的深度和方式上,由学生自主控制和完成。这种以学生为主体、以教师为主导的课堂教学结构体现了教学过程由以教为主到以学为主的重心的转移。课堂的主活动不是教师的讲授,而是学生自主的自学、探索、发现解决问题。教师应该平等地参与学生的探索、学习活动,及时发现学生在建模过程中遇到的问题并加以提示与诱导,教师不应只是“讲演者”,不应“总是正确的指导者”,而应不时扮演下列角色:模特、参与者、询问者、仲裁者和鉴赏者。

2.2 数学建模活动中应强调学生的主动参与

现代建构主义理论,强调学生的自主参与,认为数学学习过程是一个自我的建构过程,在数学建模活动过程中,教师要引导学生主动参与,自主进行问题探索学习。发展性教学论指出:教学活动作为学生发展的重要基础,首先是学生主动参与,其目的是促进学生个性发展。要体现学生主体性,就要为学生提供参与的机会,激发学生学习热情,及时肯定学生学习效果,设置愉快情境,使学生充分展示自己的才华,不断体验获得新知,解决问题的愉悦。在建模活动过程中,教师不是以一个专家、权威的角色出现,而是要根据现实情况,采取一切可以调动积极性的策略来鼓励学生主动参与到建模的思维活动中来,切忌将个人的意志强加给学生而影响学生个性的充分发展。

2.3 数学建模案例教学过程应强调合作功能

学习者与周围环境的交互作用,对于知识意义的建构起着关键性作用.建模过程中,学生之间由于个体知识经验和认知水平、心理构成存在差异,对于同一问题,每个学生的关注点不会相同,对问题的思考和理解必然也不一样。案例教学过程中应强调学生在教师的组织和引导下一起讨论交流观点,进行协商和辩论,发现问题的不同侧面和解决途径,得出正确的结论,共享群体思维与智慧的成果,以达到整个学习共同体完成所学知识的意义建构.这种合作、交流可以激活学生原有的知识经验,从中获得补充,发展自己的见解,为建立数学模型提供良好的条件.教学过程中,教师应当鼓励学生发现并提出不同的观点和思路,对于同一问题的理解,也要鼓励学生根据自己的思维,自主、创新的寻找解决问题的方法,不断提高学生综合运用知识的能力,不断积累运用数学知识解决实际问题的经验,提高学生的数学建模意识和建模能力。

2.4 数学建模案例教学过程中应强调数学思想的教学,强调数学思维的培养

高中数学建模的案例教学过程中,蕴含着许多的数学思想方法。教学过程中教师应把建模知识的讲授与数学思想方法的教学有机地结合起来,在讲授建模知识的同时,更突出数学思想方法的教学。首先是数学建模中化归思想方法,还可根据不同的实际问题渗透函数与方程思想、数形结合思想、分类讨论思想、等价转化思想、类比归纳与联想思想及探索思想,还可向学生介绍消元法、换元法、待定系数法、配方法、反证法等数学方法。只要教师在高中数学建模教学中注重全方位渗透数学思想方法,就可以让学生从本质上理解数学建模思想,就可以把数学建模知识内化为学生的心智素质。同时,数学建模活动由于其本身的特性,抽象、概括、逻辑性强,因而数学建模活动是高中生进行创新思维训练、智力发展的最好的载体,为了发展学生的智力,在数学建模教学中应改变只偏重建模知识而忽视智力发展的现状,加强对学生思维能力的培养,学生在数学建模学习过程中,特别强调要提高分析问题解决问题的能力,发展学生的数学应用意识与数学建模思想,提高学生的创新思维能力。

2.5 案例教学过程中应强调信息技术的使用

在案例教学的过程中,强调计算工具的使用并不仅仅是指在计算过程中使用计算工具,更重要的方面是在猜想、探索、发现、模拟、证明、作图、检验中使用计算工具。对于水平较高的学生,教师可以引导他们把计算机的使用和“微型的科研”过程结合起来,让学生尝试自己提出问题、设计求解方案、使用计算工具,最终解决问题,进而找到更深入的问题,从而在数学建模的过程中逐渐得到科研的体验。

2.6 案例教学过程中要强调非智力因素发展

非智力因素包括动机、兴趣、情感、意志、态度等,在数学建模案例教学过程中培养学生的非智力因素就是要使学生对数学建模具有强烈的求知欲,积极的情绪,良好的学习动机,顽强的意志,坚定的信念和主动进取的心理品质.在高中数学建模案例教学中教师可根据高中生的心理发展水平和具体情况,结合高中数学建模的具体内容,采取灵活多样的形式,讲解数学建模的范例在日常生活、社会各行业中的应用,激发学生强烈的求知欲,树立正确的学习动机。激发学生参加数学建模活动的强烈兴趣,让学生充分体会数学建模的实用性、趣味性.

3 在数学建模案例教学中的存在的一些问题

3.1长期以来,我国的中学数学教育理念受传统的中国文化和教学教育模式的影响较为深刻。就教育观来说,基本方式是“苦读+考试”;就数学观来说,依然是“计算+逻辑”。培养出来的学生大多高分低能,学生往往能够迅速识别题型,套用解题的技巧与方法,但对处理实际生活中的数学问题,他们显得束手无策。

3.2中学学校数学教学改革偏重于对教的研究,但对于学生是如何学的、学的活动是如何安排的,往往较少问津。我们的学生对非常规的求异思维,对未知领域的较深程度的探索显得不足。

3.3受社会风气影响,大多数中学生整体素质下移,学生数学基础普遍偏差,对数学课缺乏兴趣,存在厌学情绪。

总之,在中学数学建模的案例教学过程中,教师应把学生当做问题解决的主体,不要仅仅是把问题解决的过程展示给学生看。问题坏境与问题解决过程的创设应有利于发挥学生的主动性、创造性和协作精神,让学生能把学习知识、应用知识、探索发现、使用计算机工具、培养良好的科学态度与思维品质更好的结合起来,使学生在问题解决的过程中得到学数学、用数学的实际体验。从而提高案例教学课的教学效率,提高学生的数学思维能力与建模能力。

参考文献

[1]张可锋.新课标下的高中数学建模.教育研究,2011(9).

[2]李炳照.数学建模思想融入数学类课程的思考与实践.高等理科教育,2006(10).

[3]袁震东编著.高中数学-数学建模 . 华东师范大学出版社

[4]岳卫芬 硕士论文.关于数学学习策略及其教学研究. 华中师范大学2005年

第6篇:数学建模心得范文

【关键词】3D人体模型;蚁群算法;快速建模

随着信息化的高速发展,网络3D化已经成为一种必然的趋势。当下在研究3D网络试衣系统中,3D人体模型的建立是首要解决的问题。如何使得建立的人体模型具有经济性、快速便捷性、普遍适用性成为了3D试衣系统能否普及的关键所在,本文就建立3D人体模型提出一种便捷优化的方法。

目前,可以3D建立人体模型的方法主要有两大类:一类是通过三维扫描仪,另一类是利用3D软件建模进行模型仿真。第一类建模相对真实,但是不具有经济性。第二类在效果上可能不如三维扫描仪真实,但具备经济性。综合考虑,选择3D软件来进行人体建模。

1.3D人体模型建模

当下3D软件很多,有CAD,Maya,3ds Max,Poser等等,无论哪一种都可以建立3D人体模型,并且利用这些软件建立人体模型的方法也不少。基于CAD软件,提出了一种通过截面环求取三维人体模型的建模方法[1];利用Maya软件主要是进行3D动画设计,把绘画中的素描稿图片导入软件,通过几何体建模、调整比例、布线的流程建立出人体模型[2];利用Poser软件获取三维人体数据,利用OpenGL技术渲染效果,在VC++框架下,采用多面体建模技术中的三角网格法生成了3D人体模型[3]。

1.1 3D人体模型建模原理

本文中快速建模的原理是基于人体特征点的测量去相应改变模型库里面的模型,通过测量的各部分数值与标准模型的各部分数值的比值,对人体模型库中的模型进行相应缩放,采用蚁群算法算出误差最小的缩放比例。

1.2 原理应用分析

由于男性身体比例均匀,所以本文的模型修改方法可以对已经建好的人体模型进行缩放。用户在建立自己的模型时,选择好体型,再输入特征点的测量数据。为了能达到真实的仿真效果,特征点的测量要做到详细准确。特征点与三维视图中X、Y、Z轴之间的关系如表1所示。

其中0表示没有影响,1表示有影响。腰围数据包括高腰围、中腰围、低腰围数据,腿围数据包括大腿围、小腿围数据,手臂围数据包括大臂围和小臂围数据。

1.3 数学建模

以男性胸围数据为例进行模型建立说明。

其中胸宽为,胸高为,放缩比为R,X轴的放缩比为,Y轴的放缩比为,Z轴的放缩比为。

通过上述方法,可以分别求出各个身体部分特征点对应的X、Y、Z轴的放缩比,对于相同轴向上的放缩比,将最大值和最小值定为该轴向上的取值范围边界点,那么X、Y、Z轴的放缩比分别可以确定相应的取值范围Q。

2.蚁群算法

蚁群算法(ant colony algorithm,ACA)是受到蚂蚁群体寻找食物行为的启发而提出的一种基于蚁群的模拟进化算法。一般来讲群体随机搜索算法用于解决特定的组合优化问题[4]。

蚁群算法优化数学建模:

N:算法中进行搜索蚂蚁的数量。

首先,用随机函数在X、Y、Z轴的放缩比确定的取值范围中随机选出3个轴向上的放缩比,由这三个放缩比可以得到特征点的一组数据,我们称为随机计算值(R),n个蚂蚁会得到n组特征点数据。每一组随机计算值可以得到该组数值与测量值(C)的误差(),如公2-3所示。

通过第i个蚂蚁取得的随机数而得到的各部分的误差,按照相应要求可得到人体模型的总的误差和,定义为.

:蚂蚁由节点i到节点j的期望值。在不同范围的,的值不一样,为蚂蚁以后选择路径提供期望依据.

:t时刻蚂蚁由节点i到节点j的概率;在t时刻时,蚂蚁在节点i处按照来选择前进的方向走向,的计算依据是根据残留信息素以及期望度的重要程度来算取的。

:t时刻蚂蚁在ij路径上残留的信息素;在初始时刻,每条路径上的信息素是相等的,设初始值为1,经过m个蚂蚁完成一次循环后,信息素改变由式2-4,2-5可得:

其中l为经过该路径上的蚂蚁数量。

这样每次循环中,每只蚂蚁都依据概率公式计算来选取路径,一次结束后,每只蚂蚁选取的结果又通过信息量公式调整反馈到概率公式中,作为新一轮循环选择路径的参考依据。

通过上述蚁群算法,可以输出和实际测量数据误差最小的最优解。

3.系统功能分析

男性人体模型快速建模系统包含三个子部分,分别是用户登陆界面交互,系统核心算法程序实现以及数据交互和存储,如图1所示。

系统核心算法程序实现主要有三个功能实现:

(1)通过用户登陆界面来进行特征点数据录入

采用C#编程语言,以Visual Studio 2008为开发工具,开发设计出登陆界面,并将数据存入到数据库中为建模提供数据支持。

(2)系统算法程序

系统算法程序主要实现蚁群算法求得最优解的过程,通过数学建模方法进行编程实现,是本设计的核心程序。

(3)3ds Max软件建模

根据蚁群算法得到的最优放缩比来对模型进行更改。

数据交互和存储主要体现在程序、软件以及数据库之间的数据传输和交互,以及最后的保存。

4.系统功能实现

通过输入特征点的数据,由C#语言进行界面实现和核心算法的实现,利用MAXScript脚本语言对模型进行再编辑,实现了快速建立可视化三维人体模型的功能,得到的人体模型如图2所示。

通过蚁群算法,可以得到修改前后人体模型的比较图如图3所示。

5.结论

本文通过修改已经建立好的人体模型,通过输入特征点的数据,基于蚁群算法得到最优缩放比进行人体仿真,具有出图快、仿真效果真实、便于使用和推广的优点。但是也存在一定的局限性,只能针对男性人体进行建模。对于女性人体快速建模,有待于进一步深入研究。

参考文献

[1]李鸿.3DSMAX建模技术分析[J].邢台学院学报,2009, 24(4):106-107.

[2]王媚,陆国栋,张东亮.服装CAD中三维人体建模技术的研究及应用[J].工程图学学报,2011,1:1-6.

[3]刘会军.人体速写在MAYA人物建模中的应用[J].外语艺术教育研究,2011,12(4):78-80.

[4]林小平,周石琳,等.一种基于蚁群算法和互信息测度的图像拼接技术[J].重庆理工大学学报( 自然科学),2013, 27(1):76-81.

作者简介:

第7篇:数学建模心得范文

1.创设情境,激发建模兴趣。众所周知,创设情境是激发学生学习兴趣的重要途径,同时也是促进学生建模的有效手段。在教学中,教师要结合教材内容,从学生的生活实际和已有知识经验出发,寻找数学模型的生活背景,精心选择学习素材,设计具有思考价值、有现实意义、难易适度的生活化问题,从而激发学生的探究兴趣,建构相关的数学模型。

如教学“确定起跑线”时,我从播放400米赛跑的片段引入新课,先展示操场跑道的整体情况,接着播放运动员在不同起跑线上准备起跑、跑到弯道时跑内道的学生快速追上外圈的学生、最后冲刺等情境。在观看了此情境后,学生产生了许多疑问:为什么起跑线不同?为什么跑弯道时,跑内道的运动员能那么快地超过跑外道的运动员呢?是因为他们越跑越快吗?紧接着,学生获得相关信息:跑道是由直道和弯道组成的,终点相同,起跑线不同,外道比内道长。此时,我进一步借助课件让学生明确:因为外道比内道长,所以各跑道的起跑线不同。将教材上的内容通过生活中熟悉的事例,以情境的方式展示给学生,这样很容易激活学生已有的生活经验,并能借助积累的经验感受其中隐含的数学问题。学生有了丰富的问题情境做支撑,就能为解决本课的数学模型——“相邻起跑线的距离差=直径差(道宽)×π”做好铺垫,从而激发建模兴趣。

2.积累表象,培育建模基础。审视小学数学教学中的许多数学问题,我们可以发现,不同的数学情景背后,往往具有相同的思维模型,都是通过表象这个中间环节,为学生架设从形象思维跃迁到抽象思维的支点。因此,教师要给学生提供丰富的感性材料,多侧面、多维度、全方位感知这类事物的特征或数量相依关系,为数学模型的准确构建提供可能。

如五年级《数学》上册“数的奇偶性”一课,小船原始状态在南岸,往返几次后,小船是停留在南岸还是北岸呢?教师让学生拿物体当成船实际操作往返,让学生用积累的经验来感受其中隐含的数学问题,再简化到图形符号表示,从具体到抽象,从而得出奇数次小船都在北岸,偶数次小船在南岸。最后列举开关灯、抛硬币等类似事例,为形成“数的奇偶性”的模型奠定了坚实的基础。

3.抽象本质,直击建模实质。具体生动的情境问题只是为学生数学模型的建构提供了可能, 如果忽视对具体的表象描述进行取舍进而抽象概括出本质的、具有一般特性的方法、规律,那就不能称其为建模。

如建立“圆柱”这个几何模型时,首先让学生观察热水瓶、茶杯、可乐罐、电线杆、大树、房屋柱子等,通过现代教学手段(如用多媒体课件或实物投影仪),初步建立实物圆柱的表象。然后让学生学会撇开扶手柄、树枝、颜色等非本质特征,分析主体部分的形状,再配以必要的假设,得出它们的共同属性:只能往侧面方向滚动,且上下两个底面是大小相同的圆面,侧面可以展开成长方形的立体图形。最后抽象出“圆柱体”这一数学模型。在这个教学过程中,教师充分挖掘教材中蕴含的数学建模的思想,精心设计教学环节,让学生经历“观察—分析和处理(简化)—抽象—检验和修改”的过程。完成从物理模型到直观的数学模型,再到抽象的数学模型的建构过程。

第8篇:数学建模心得范文

关键词: 数学应用问题 数学应用能力 数学建模 网络游戏

新课程标准对于学生应用的能力提出了一定的要求。职业学校的学生普遍数学能力欠缺,对数学有恐惧心理,主要体现在缺乏对数的感觉、空间想象能力欠佳,没有较好的逻辑思维,无法准确地使用数学语言来表达。学生进行数学的应用自然就更加困难了。教师在教学过程中,应不断地培养学生的数学能力,体现新课程标准的要求,还应不断提高学生的数学应用水平,将教材中的问题改编成数学应用问题是一种常用的方法。

一、数学建模的定义

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、做出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后通过计算得到的模型结果来解释实际问题。这个过程就是数学建模。[1]数学建模是一种数学的思考方法。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。先要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣,以及广博的知识面。

二、数学建模的几个过程

目前,校园网上非常流行一个叫开心农场的网页游戏。简单介绍一下就是开垦农田,种植各种各样的蔬菜水果,收获后可以得到经验和金钱,经验不断地积累便可以升级,升级之后就可以种植更多品种,还可以开垦更多的农田。还可以将别的玩家加为好友,好友之间的经验和金钱数可以排名,也可以帮助好友浇水、除虫来获得经验。这个游戏得到很高的点击率就是因为有趣,在这样一个有趣的游戏中也可以体现竞争,如何才能获得更多的经验,种植每一种作物时间、经验、金钱数均不同,当选择的范围很广的时候,应该怎样种植才能获得最大的收益?这是每一个玩家都会想的问题,它可以简化成一个数学问题,成为数学应用素材,学生可以通过建模来寻求答案。

1.模型准备:了解实际背景,明确其实际意义,掌握各种信息,用数学语言来描述问题。

首先通过了解获得数据:(表格中白色部分,按种植经验升序排列)

问题:种植何种作物可以获得最佳的金钱收益?是不是等级越高的作物种植的经验越多?

2.模型假设:根据实际对象的特征和建模的目的,对问题进行简化,并提出恰当的假设。

假设实际常量均按表格中的数据(增产和被好友偷窃果实的情况互相抵消)。

3.模型建立:利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。

在这些已知量的条件下,计算每小时获得的经验数和金钱的数量。

每小时金钱=■

每小时经验=■

4.模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。

利用所得的数学关系式来求出相应的数据,完成表格。

5.模型分析:对所得的结果进行数学上的分析。

制作图表的优点是比较直观,学生易于理解,用Excel等软件来完成也很方便。从图表中可以比较明显地看出问题的答案,进而可以进一步思考怎样种植才能兼顾经验和金钱两方面。

6.模型验证:根据自己所得的方法实际操作,看看是否达到预定的效果,若有偏差则分析原因进行修正,最后将自己的研究成果写成报告。

三、在教学中渗透数学建模

数学建模的思想将生活实际与数学紧密地联系了起来,使得数学有了更多实际的应用。一个好的模型的建立需要有充分的数据、可靠的假设、准确的数学关系、正确的求解、较全面的分析和实际的检验修正。在教学中实施过程中则要考验教师和学生的多种能力。

1.教师要能充分发掘应用的实例,为学生的建模创设良好的情境。

建模的问题来源于生活,这就使教师有一个敏锐的触觉,能够及时发掘适合学生的数学建模问题。问题不能太过复杂,要符合学生的最近发展区,为学生的建模创设一个好的情境。

2.学生具有一定的数学能力,会使用一些辅助工具。

数学建模是对数学的应用,层次要求比较高,学生应该具备一定的数学能力。这些能力是教师在平时教学中逐渐培养出来的,如数据处理、数据分析、Excel等辅助的工具软件的使用。

3.教师的组织和对学生的指导,在建模过程中发挥学生的主动积极性。

在数学建模前期,教师发挥着重要的引导作用,在建模的过程中是以学生为主,要充分地使学生参与,积极发挥主动性。可是,数学建模是一个灵活性很强的项目,学生在过程中必定会遇到各种各样的困难。所以教师就要适时地做出点拨和指导,让学生不至于被挫折问题阻拦而产生心理阴影,从中体会到思维运动的快乐,从而培养学生的受挫能力。学生在建模过程中不仅体会到了数学的强大作用,还培养了各种能力。数学建模除了锻炼了逻辑思维能力和创新能力,还可以培养学生的团队合作意识和团队合作精神[2],这也是高职学生未来必备的一项重要的能力。

参考文献:

第9篇:数学建模心得范文

关键词:建模思想 小学数学 应用

《数学课程标准》指出:“数学教学应该从学生已有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并理解运用。”在小学数学教学活动中,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。现结合自己的教学实践谈谈对小学生形成数学建模思想的思考。

一、数学模型的概念

数学建模就是建立数学模型,是一种数学的思考方法,是利用数学语言、符号、式子或图象模拟现实的模型,是把现实世界中有待解决或未解决的问题,从数学的角度发现问题、提出问题、理解问题,通过转化过程,归结为一类已经解决或较易解决的问题,并综合运用所学的数学知识与技能求得解决的一种数学思想方法。在小学阶段,数学模型的表现形式为一系列的概念系统,算法系统,关系、定律、公理系统等。

二、小学数学教学渗透数学建模思想的可行性

数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”、“建模”的意义上,才是一种真正的数学学习。

三、小学“数学模型”的构建

(一)建模的策略

1.精选问题,创设情境,激发建模的兴趣。数学模型都具有现实的生活背景,这是构建模型的基础和解决实际问题的需要。

2.充分感知,积累表象,培育建模的基础。教师首先要给学生提供丰富的感性材料,为数学模型的准确构建提供可能。

3.组织跃进,抽象本质,完成模型的构建。具体生动的情境或问题只是为学生数学模型的建构提供了可能,如果忽视从具体到抽象的有效组织,那就无法建模。如“平行与相交”一课,如果只是让学生感知火车铁轨、跑道线、等具体的素材,而没有透过现象看本质的过程,提出问题:为什么两条直线永远不相交?动手实验思考:①在两条平行线间作垂线。②量一量这些垂线的长度,你发现了什么?经历这样的学习过程,完成从物理模型到直观的数学模型再到抽象的数学模型的建构过程。

4.重视思想,提炼方法,优化建模的过程。不管是数学概念的建立、数学规律的发现、数学问题的解决,核心问题都在于数学思想方法的运用,它是数学模型的灵魂。如“圆柱的体积”一课教学,在建构体积公式这一模型的过程中要突出与之相伴的数学思想方法:一是转化,将未知转化成已知;二是极限思想。

5.回归生活,变换情境,拓展模型的外延。初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升。使模型的外延不断得以丰富和拓展。

(二)建模的途径

开展数学建模活动,关注的是建模的过程,而不仅仅是结果,因此,在小学数学教学中,教师要转变观念,革新课堂教学模式,以“建模”的视角来处理教学内容。

1.根据教学内容,开展建模活动。教师要多从建模的角度解读教材,充分挖掘教材中蕴含的建模思想,精心设计和选择列入教学内容的现实问题情境,将实际问题数学化,建立模型,从而解决问题。

2.上好实践活动课,为学生模仿建模甚至独立建模提供有效指导。可以结合教材内容,整合各知识点,使之融进生活背景,产生好的“建模问题”作为实践活动课的内容。如安排这样的问题:“找10盒火柴,先在小组里拼一拼,看看把10盒火柴包装成一包有哪些不同的方法。怎样包装最节省包装纸?”

3.改编教材习题,加强建模教学。

教材中有些问题需要改编,使其成为建模的有效素材。如图:

“图中正方形面积是8平方厘米,求圆的面积。”可以利用它开展以下的建模活动:设圆的半径是r,探讨出圆的面积与正方形面积之间的关系后,建立起关系模型,进而解决问题。

四、小学“数学模型”的应用

数学是一门应用性很强的基础科学,只有在实践应用中才能摄取数学知识的精髓。作为数学知识核心内容的“数学模型”,它的作用自然处于所有数学应用之心脏。

1.用模型解释。如果建模的过程是“归纳”的话,那么用模更多的是“演绎”。用模型去解释,是对模型的提取、解读和应用。

2.用模型解题。要学会把复杂问题纳入已有模型之中,使原有模型成为构建和解决新问题的思考工具。

3.用“旧模型”构建“新模型” 数学的概念、法则、关系等都是数学模型,并且总是建立其他数学模型的材料,模型的应 用还应体现在对新知的建构上。