公务员期刊网 精选范文 数学概率统计论文范文

数学概率统计论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学概率统计论文主题范文,仅供参考,欢迎阅读并收藏。

数学概率统计论文

第1篇:数学概率统计论文范文

对传统的概率论与数理统计教学进行归纳,大致是:理论知识+说明举例+解题+考试。这种教学模式可以让学生掌握基础知识,提升计算能力,也有利于解决课后习题。但这种教学模式也有一定的缺陷,不难看出,它与实际脱离较大,更多地停留在书本上。学生掌握了理论知识,未必会将其运用到实际,这违背了素质教育的宗旨,不利于学生学习积极性的提高。运用数学建模的指导思想,可以有效避免传统教学模式的缺陷。数学建模的一个重要功能就是培养学生理论联系实际的能力。将数学建模思想融入教学,是概率论与数理统计教学的需要,也是顺应教学改革的需求。

二、数学建模思想融入课堂教学

教师在讲授概率论与数理统计课程时,面临着非常重要的任务。如何让学生通过学习增强对本课程的理解,并将知识合理地运用到实践中,是摆在教师面前的问题。教师要将数学建模思想合理地融入到课堂。

(一)课堂教学侧重实例

概率论与数理统计课程是运用性很强的一门课程。因此,将教学内容与实例想结合,可以有效提高学生的理解力,加深学生对知识点的印象。例如,在讲授概率加法公式的时候,可以用“三个臭皮匠问题”作为为实例。“三个臭皮匠赛过诸葛亮”是对多人有效合作的一种赞美,我们可以把这个问题引入到数学中来,从概率的计算方面验证它的正确性。首先可以建立起数学模型,三个臭皮匠能否赛过诸葛亮,主要是看他们解决实际问题的能力是否有差距,归结为概率就是解决问题的概率大小比较。不妨用C表示诸葛亮解决某问题,Ai表示第i个臭皮匠单独解决某问题,其中i=1,2,3,每个臭皮匠解决好某问题的概率是P(A1)=0.45,P(A2)=0.55,P(A3)=0.60,而诸葛亮成功解决问题的概率是P(C)=0.90。那么事件B顺利解决对于诸葛亮的概率是P(B)=P(C)=0.90,而三个臭皮匠解决好B问题的概率可以表示成P(B)=P(A1)+P(A2)+P(A3)。解决此问题的过程中,学生既感受到了数学建模的乐趣,也在轻松的氛围中学习到了概率知识。这种贴近实际生活的教学方式,不但可以提高学生学习概率的积极性,也可以增强教师从事素质教育的理念。

(二)开设数学实验课

数学实验一般要结合数学模型,以数学软件为平台,模拟实验环境进行教学。发展到今天,计算机软件已经很成熟,一般的统计计算都可以由计算机软件来完成。SPSS、SAS、MABTE等软件已经广泛得到了运用,较大数据量的案例,如统计推断、数据模拟技术等方面的问题,都可以用这些软件来处理。通过数学实验,不但可以体现数学建模的全过程,还能增强学生的应用意识,促使他们主动学习概率论与数理统计知识。学生通过软件的学习与运用,增强了动手能力,解决实际问题的能力也会有所增强。

(三)使用新的教学方法

众所周知,传统的填鸭式的教学方法很难取得好的教学效果,已经不适应现代教学的要求。实践证明,结合案例的教学方法可以由浅入深,从直观到抽象,具有一定的启发性。学生可以从中变被动为主动,加深对知识的理解。这种教学方法还能让学生的眼光从课堂上转移到日常生活,进行发散思维,学生会进一步发挥主观能动性,思考如何将实际问题数学化,如何结合概率论与统计知识解决实际问题,等等。在这种情况下,学生的兴趣提高了,教学效率自然也会得到提高。

(四)建立合理的学习方式

概率论与数理统计教学不能一味地照本宣科。数学建模并无固定模式,它需要的更多是技能的综合。教师在实际教学过程中,不应该以课本为标准,而应该多引导学生自主解决实际问题,让学生去查阅相关背景资料,以提高其自学能力。教师可以适当补充一些前言的数学知识,让一些新观念和新方法开阔学生的视野。在处理习题问题上,教师要适当引入一些不充分的问题,而不是仅仅局限于条件比较充分的问题上,要让学生自己动手分析数据、建立模型。教师应该经常开展专题讨论,引导学生勇于提出自己的见解,加强学生间的交流与互助。例如,在讲授二项分布知识时,为了加深学生对知识的领悟,教师可以用“盥洗室问题”为实例来讲授二项式的实际运用。问题:宿舍楼内的盥洗室处于用水高峰时,经常要排队等待,学生对此意见很大。学校领导决定把它当作一道数学题来解答,希望学生能从理论上给出合理的解决方法。分析:首先收集基本的资料,盥洗室有50个水龙头,宿舍楼内有500个学生,用水高峰期为2小时(120分钟),平均每个学生用水时间为12分钟,等待时间一般不超过12分钟,但经常等待会让学生失去耐心。学生希望100次用水中等待的次数不超过10次。解决方法:设X为某时刻用水的学生人数,先找到X服从什么分布。500个学生中,每个学生的用水概率是0.1,现在X人用水,与独立实验序列类似,比较适合用二项分布,因此设X服从二项分布,n=500,p=0.1,用概率公式表示为P(X=K)=CKnPK(1-P)n-K。接下来计算概率,主要关注不需要等待的概率(即X<50),P(X<50)=∑49K=0CKnPK(1-P)n-K,这个二项式分布是一个初步的模型,可按二项分布来计算。由于n较大(n=500),直接用二项分布计算过于复杂,我们可以利用两种简化近似公式来计算(泊松分布和正态分布)。经过查正态分布表,我们可以算出x=58,这说明水龙头的个数在59~62这个范围时,学生等待的时间概率比较合理。

三、课后练习反馈数学建模思想

数学课程离不开课后练习,课后作业是其重要的组成部分,对于巩固课堂知识、进一步理解所学理论具有重要作用。因此,教师要把握好课后练习环节。概率论与数理统计这门课涉及到很多随机试验,一般的统计规律都需要在随机试验中找到结果。例如通过投掷骰子或硬币可以理解频率与概率的关系,通过双色球的抽样可以理解随机事件中的相互独立性,统计一本书上的错别字可以判断其是否符合泊松分布等。通过亲自做实验,学生们不但能探求到随机现象的规律性,还能进一步巩固所学的统计理论。除了一般的练习题以外,教师可以适当增加一些与日常生活密切相关的概率统计题目,这些题目往往趣味性较强。例如,在知道彩票的抽奖方法和中奖规则后,可以明确三个问题:(1)摸彩票的次序与中奖概率是否相关?(2)假如彩票的总量是100万张,则一、二等奖的中奖概率是多少?(3)一个人打算买彩票,在何种情况下中奖概率大一些?这种课后练习对于学生趣味的提高很有帮助。

四、考核方式折射数学建模思想

作为一门课程,肯定需要考核,这是教学过程中的一个必然环节。课程考核是评估教学质量的重要方式。概率论与数理统计课程传统的考试一般采用期末闭卷考试,教师通常按固定的内容出题。这种情况下,学生为了应付考试,会把很多精力都用在背诵公式和概念上面,从而会忽视知识的实际运用。学生的综合成绩虽然也包括平时成绩,但期末闭卷考试往往占据很大比例。就是是平时成绩,其主要还是考核学生课后的习题完成情况。因此,考核实际就成了习题考试。对于学生在课后的实验,考核中往往很少涉及。这会导致学生逐渐脱离日常实际,更注重课堂考勤和作业。要改变这种情况,有必要改变传统的考核方式。灵活多变的考核方式才更有利于调动学生的积极性,激发他们各方面的潜能。考核可以适当增加平时成绩所占的比重,比如,平时成绩可以占总成绩的30%以上。平时成绩主要采用开放性考核,由课后实验或课外实践组成。教师可以提出一些实践问题,让学生自主去解决。学生可以单独完成任务,也可以组队进行,最后提交一份研究报告,教师在此基础上进行评定。

五、结语

第2篇:数学概率统计论文范文

关键词:概率论;数理统计;数学建模

在学习数学时,概率论和数理统计是最为基础的课程,也是数学中的主要课程,此课程中的知识内容有助于培养学生的数学素质及提高学生的解决问题能力。将教学建模运用到概率论和数理统计中,可以有效提高学生数学应用能力,并且弥补传统数学教学中的不足,促进数学教学可持续发展,对于数学来说,这是一件非常有意义的事情。

一、概率论和数理统计中应用数学建模的实例

要想使数学可以应用到我们的日常生活中,并且能够解决日常生活中的实际问题,就要创建数学模型。在现实中有着许多数学建模的例子,比如:

我们学校有6500名学生,但是每到下午打水的人就非常多,导致水房水管不够用,经常会出现排队很长的现象。基于此问题,学校应该在原有的水管上面添加多少水管才能有效的解决此问题?

分析:首先我们可以先了解学校中水房现有的水管有多少个,然后再调查学生在打水过程中占用水管的时间(比如1%),经过分析我们可以了解到学生在打水时候使用水管都是独立的,基于此我们就可以运用中心极限定理。在此基础上还有一种情况,就是学生使用水管和不使用水管的机率,使用水管的概率是0.01。学生使用水管可以是一个独立的实验,那么这个问题就可以是n=6500的n重伯努利实验。假设使用水管的学生人数为X,那么X-B(6500,0.1),就可以通过建立一个数学模型使用德莫佛-拉普拉斯中心极限定理来解决这个问题。[1]

上述问题是一个概率性的问题,下文讲述一个数理统计的例子。

数理统计学的实质是通过科学有效的方式进行收集和分析数据。科学有效的数据指的是数据中有着多种信息,并且对分析有重要作用,此数据精准、可靠。数理统计的核心主要是统计推断。比如:

我们学校中有一个鱼塘,鱼塘中鱼的数量是N,想要计算鱼塘中鱼的数量不可能将鱼都捞起来,这是不现实的,所以只能通过抽样来进行估算。首先可以捞起来一部分鱼并对其做上记号,然后将其放入鱼塘中。然后再捞鱼,如果捞起来的鱼身上有记号,那么就要估算鱼塘中鱼的数量。

首先我们可以运用频率估量这个方式来进行,通过观察和尝试来建立数学模型,以此来解决这个问题。在这个过程中我们可以了解到观察是一个有目的的活动,对搜集材料起到了重要的作用,尝试是在观察的基础上自主构建的解题目标,通过实际行动来判断自己的目标是否正确。所以在数学建模中,观察和尝试也是必不可少的。

二、概率论和数理统计中应用数学建模的体会

将数学建模应用到概率论和数理统计中,可以有效的帮助我们解决实际的问题,并且在概率论和数理统计中应用数据建模也是可行的。概率论和数理统计有着实用性和随机处理问题的特点,它的理论内容知识也被运用到社会中各行各业中,比如降雨概率、体育彩票等一系列的问题。在概率论和数据统计中应用数学建模,不仅可以使我们了解到概率论和数理统计的内容背景及实际意义,还能使抽象化的概率论和数理统计知识实际化,提高我们概率论和数理统计学习的效率。

在概率论和数理统计中应用数学建模思想,使概率统计学的知识得到了充分的应用,还能够培养学生创新能力,有效的提高了学生的学习效率。通过数学建模的应用过程,学生不仅可以在传统教学模式的基础上学到理论知识,还能够利用概率统计学知识来解决生活中的实际问题,使概率和数理统计教学目的达到理想的效果。

三、结束语

从概率论和数理统计课程的发展到如今被实际运用,经历了一个漫长的过程中,概率论和数理统计知识在我国自然科学领域、社会领域、工程领域、农业领域等不同行业中都有着直观重要的作用。随着我国社会的不断发展,就要求概率论和数理统计教学方式不断的创新和改革,才能适应社会的发展需求。将数学建模运用到概率论和数理统计中也是一个漫长的系统工程,这需要数学研究人员经过长期不断的深入研究,才能使数学建模能够合理、科学的运用到概率统计课程中,提高学生概率统计学习效率,从而促进概率论和数理统计课程的创新改革步伐。

第3篇:数学概率统计论文范文

1概率论与数理统计课程教学改革的必要性与重要性

概率论教学要把直观和实际背景跟数学教育中的理论性,严谨性和逻辑性结合起来。传统的数学教育对于学生对理论知识的理解和灵活运用以及解决实际问题能力的培养有所忽视。对于培养各类人才的综合院校,概率论与数理统计课程教学的基本目标是把数学方法和应用有机地结合起来,不但为本专业其他课程的学习打好理论基础,还要为在实际工作中如何应用打好基础,概率论与数理统计教育不仅是知识教育,而且是一种分析能力的训练,一种实际应用能力的培养,概率论与数理统计的教学改革要从培养学生科学素质和创新能力出发。我们要打破传统的在课堂上讲授理论知识的模式,要注重培养学生发现问题,分析问题和解决问题的能力。要教会学生从不同的角度看待同一个问题,从而加深对问题本质的理解和体会。在具体的教学过程中要把概念和例子结合起来,还要总结不同概念之间的区别和联系。

2概率论与数理统计课程教学改革的模式与实践

教学内容和课程体系的改革是高等教育改革的核心,近年来我们在组织教学的过程中,从当今大学生应具备的基本科学素质来确定概率论与数理统计课程的教学模式,从教学理念、教学内容、教学过程和教学方法几方面进行了课程建设,特别地,要注意以下三点:

2.1与实际结合,激发学生对概率统计课程的兴趣

兴趣是最好的老师,概率论与数理统计从内容到方法与以往的数学课程都有本质的不同,因此其基本概念的引入就显得更为重要。为了激发学生的兴趣,在教学中,可结合教材插入一些概率论与数理统计发展史的内容或背景资料。如概率论的直观背景是充满机遇性的赌博,其最初用到的数学工具也仅是排列组合,它提供了一个比较简单而非常典型(等可能性、有限性)的随机模型,即古典概型;在学习了中心极限定理后,可以给学生解释自然界各种现象的正态分布规律,有助于学生对基本概念和理论的理解,从而激发学生对概率论学习的兴趣。在概率统计中有不少是实际问题的抽象,在每章引入一至两个实际问题的概率模型,让学生了解问题实际背景,一方面易于学生理解,另一方面,更重要的是如何从实际问题抽象出概率概念模型,通过概率规律分析后再去解释自然界各种现象。要培养学生利用概率论与数理统计的知识和方法分析实际问题、解决实际问题,这也是概率统计课程教学质量和效果的重要体现。

2.2多媒体教学

多媒体教学使教学内容生动地呈现在学生的面前,使学生易于接受和理解,让学生在轻松活泼的气氛中获得丰富的知识。在概率论与数理统计的教学中,演示随机现象的统计规律,能有效地调动学生的学习积极性,增强学生的观察力和分析力。是学生在学习教材知识的同时,开阔知识视野,学习如何从数据出发,科学地建立模型,以概率统计知识进行推断,对现实生活中的问题作出恰当的解释,提高并培养学生的思维、应用能力,使理论和实践很好地结合起来。我们对蒲丰投针试验、二项分布的泊松逼近、正态逼近,做了动画演示,既直观又生动。在讲解概率分布的时候,软件绘制出来的图形准确地展示出了分布函数和密度函数的大部分性质,在学习统计方法时,繁杂的条件和公式编绘在电子表格里,随时准备调用,这样既为解题过程中提供了一些便捷,更让学生们看到了条理化知识的好处。多媒体课件的运用大大减少了教师书写板书的时间,使教师可以把更多的精力投入分析和讲解教学内容。总之,多媒体教学使教学内容更加形象和逼真,但教师不应该过多地依赖多媒体,有时在黑板上的演算也是必要的,特别是一些公式的推导过程。在黑板上有理有据地推导能加深学生对知识的理解和体会。

2.3与国际接轨

第4篇:数学概率统计论文范文

关键词: 概率统计 数学教学 文化性

数学的文化性特征应该具有多元性、开放性和动态性等特点。概率论是研究大量随机现象规律性的一门数学分支。而随机现象的两个重要特征即不确定性和规律性,却经常使得学生在直觉与科学之间无所适从,给学习与教学带来一定的困难。正是因为如此,从文化的角度重新审视概率统计的教学,既能促进教学,又符合新课程的理念。

1.概率统计理论的发展史略

纵观历史,自文艺复兴时期的数学家,医学教授Cardan在其热衷的赌博游戏中开始思考获得7点和在一副牌中获得“A”的概率开始,数学的一个新的分支――概率论,便在对游戏的思考中展开了它的宏伟画卷。我们知道,在自然界和现实生活中,随机现象十分普遍,它表面上杂乱无章,但在多次实验后却隐藏着规律性。续Cardan之后大约100年,另一位赌徒Mere继续研究了上述赌博问题,但是由于他数学知识的局限性,不得不求助当时数学奇才Pascal,而Pascal在与Fermat的通讯讨论中逐步明确了概率值的确定方法等理论问题,从而将游戏问题上升到了数学问题。而十七、十八世纪之后,由于商业保险、产品检验,以及军事、选举、审判调查和天气预报等大量随机问题的涌现,概率论逐步从最初为给赌徒提供咨询,转变成为急需解决的数学理论问题。自1713年Bernouli到1917年Kolmogorov,以及十九世纪二三十年代的凯特勒更是将概率统计理论不断系统化、公理化,从而确立了概率统计成为数学的一个逻辑严谨的分支。

在教学中,特别是讲授概率统计概念的教学中,还原它的文化性,将历史再现出来,既能够让学生在有趣的游戏中了解概率统计的源头,也可以让学生体验到概率统计源于生活,服务于生活的科学本质,并了解人类在认识这一问题的过程中所付出的巨大努力,从而在学习知识的同时潜移默化地感受到数学文化的存在性。

2.概率统计教学文化性的外部表现

2.1丰富有趣的生活问题,为概率统计教学的文化性增加了多元性元素。

概率统计的生活背景可谓丰富多彩,这为课堂教学提供了十分丰富的情景基础。

在概率定义理解教学中,赌博游戏的下注问题、赎金分配问题、比赛优先权问题、无法投递信件比例问题、商场结账快慢问题等。

古典概型教学中,抛硬币问题、生日问题、天气预报问题、男女出生比例问题等。

几何概型教学中,有转盘中奖问题、蒲风投针实验问题、会面问题等。

随机变量及分布教学中,有中奖问题、银行卡密码问题、感冒指数问题等。

正态分布教学中,智力分布问题、线段测量误差问题、一天的气温平均值问题等。

这些问题来自我们生活的方方面面,而且许多问题都是历史经典问题,因此问题本身的数学思维性加上历史背景性,其文化的气息更加浓厚,甚至童年故事“狼来了”问题,成语故事“三个臭皮匠顶个诸葛亮”问题,评分术语“去掉一个最高分,去掉一个最低分”问题,等等,都渗透着概率统计的思想,这无不体现着数学来源于生活,服务于生活的文化思想。

2.2大量动手操作性的实验学习活动,是概率统计教学文化性的又一体现。

在抛硬币实验中,学生在抛掷中收集数据,通过操作方式学习数学的结论。

在义务教育阶段,通过收集同学的体质健康情况,年龄,身高数据进行数据学习。

在变量的相关关系教学中,收集同学使用计算机时间,物理成绩与数学成绩等,学习变量的相关性。

在随机抽样教学中,设计调查问卷等。

可以看到,以上这些实验性学习方式,是其他数学学习中较少出现的,然而正是这些带有操作性的学习方式,丰富着学生的思维,增加着他们的心理感受,认识到所学的东西有用,能解决现实问题,学习热情高涨,从情感上丰富着他们对数学的感受。

3.概率统计教学文化性的内部表现

3.1科学思维的深刻提升。

概率统计的核心是认识隐藏在随机现象背后的统计规律性,强调随机现象的个别观察的偶然性与大量观察中的统计规律性之间的联系。必然性通过偶然性表现出来,偶然性背后总是隐藏着必然性。通过这种必然性去认识和把握随机现象,而不确定与确定,可能与不可能的集中体现,更是辩证思想的体现,是人类思维成熟的体现。因此概率统计的学习实际上是对学生过去习惯的确定性思维的一次挑战,是一次思维文化的碰创。例如抛一次硬币的结果是无法确定的,学生可以理解,但是大量抛掷的结果却是一个概率确定值,这里具有辩证统一的思想,为了让学生能够理解这样的事实,实验是必不可少的,这又使得学生经历了从具体到抽象及归纳的逻辑思维形式。在学生使用概率模型解决问题的同时,归纳思维、合情推理等思想方法与随机思想方法的交融,都是数学化意识的体现,它深入到内部,不断完善他们的思维,使其日趋成熟,这正是数学的学科特征。

3.2人文精神的不断升华。

概率统计的产生就像它的理论那样带着大量的偶然因素,但是因为有众多优秀数学家的钻研,其产生与发展又是一个必然的结果,并不断系统化、条理化。如今,概率统计已经渗透到了自然科学和社会科学的方方面面,而对于大量来源于生活的概率统计问题,必将教会学生主动利用所学的知识去认识世界、改造世界,有助于培养学生将数学理论应用于解决实际问题的能力和创新意识。

参考文献:

[1]人民教育出版,课程教材研究所,中学数学课程教材研究开发中心.高中数学必修3[M].人民教育出版社,2004.

[2]人民教育出版,课程教材研究所,中学数学课程教材研究开发中心.高中数学选修系列(2-3)[M].人民教育出版社,2004.

[3]大连理工大学应用数学系.大学数学文化[M].大连理工大学出版社,2008,(182-212).

[4]施业琼.在概率统计教学中渗透人文精神培养[J].教育研究,2009.7.

第5篇:数学概率统计论文范文

关键词:因材施教;实践教学;案例教学法

中图分类号:G64 文献标识码:A 文章编号:1673-9132(2016)34-0016-02

DOI:10.16657/ki.issn1673-9132.2016.34.007

工程教育专业认证是国际通行的工程教育质量保障制度,也是实现工程教育国际互认和工程师资格国际互认的重要基础。工程教育专业认证标准的通用标准要求:“能够应用数学、自然科学和工程科学的基本原理,识别、表达、并通过文献研究分析复杂工程问题,以获得有效结论。”概率类相关课程是数学类的一门基础课程,研究的是随机现象统计规律性问题,其基本思想和方法已经渗透到各个领域。因此,应针对不同专业建立有差别的课程体系。

一、概率统计课程教学内容的现状

南京邮电大学目前开设的概率统计课程主要包括“概率论与数理统计”和“概率统计和随机过程”两门,分别面向不同的专业需求。概率论与数理统计共48学时,主要面向计算机、自动化、经济、管理等专业。概率统计和随机过程比前者多了16学时的随机过程部分,主要面向通信、电子、光电、物联网等专业。目前,同一门课程对不同专业讲授的内容几乎完全相同,且这两门课程共同包含的概率论与数理统计部分在讲授时也并没有因专业不同而区别对待。虽然任课教师认真备课授课,但是预期的教学目标并不能完全实现,就是所谓的事倍功半。数学知识是专业知识的基础,掌握得好,会使得后面专业课的学习更加得心应手。反之,就会影响预期效果。因此,概率类课程的教学内容应根据学生的专业背景进行适当调整。特别是部分通过专业认证和拟参加专业认证的专业,应调研专业的知识背景以及对概率类课程内容的需要,在讲授过程中做到突出重点,解决难点,真正做到“因材施教”。当然以此作为契机,对全校的概率课程教学内容进行一些改革,将会更好地提高教学质量。

二、构建概率统计课程新的框架

以48学时的概率论与数理统计为例进行分析,其他以此为据,适当增加或减少课程内容或在某些内容上增大或降低教学难度。整个课程设置分为必修、实践和选修三个部分。

(一)必修部分(48学时)

必修部分主要涵盖该门课程的理论知识部分,包括概率论部分和数理统计部分。概率论部分主要包括一维、二维随机变量及其分布,随机变量的数字特征,大数定律等概率论基本概念。数理统计部分主要包括参数估计,假设检验等数理统计中的基本概念和抽样分布。

教学内容可分解成若干知识点,而联系紧密的一些知识点可以组成知识模块。将所有教学内容按照知识点、知识模块进行细分之后,按照不同专业的学习需求,增加或者跳过某个知识点或知识模块,以便调整授课内容。此外,对于高中出现的知识点、知识模块,可以采取归纳复习的方法。

(二)实践部分

概率论与数理统计课程是研究随机现象统计规律性的一门学科,从诞生到发展都离不开实践,许多重要的思想和方法都来自实践。另一方面,随着计算机的普及和发展,各种功能强大的数学软件应运而生。因此,在教学过程中加入计算机技术和数学软件,重视实践动手能力的培养成为该课程教学的必然。

实践教学内容的开展可以由多种形式来完成。一是作为一门必修课或者限选课,单独开设概率统计的实践课。二是在必修部分的课时充足的时候,将内容不太多的实践教学归入其中。三是将它归入其他课程,例如数学实验课就可以包含概率统计的实验问题。具体形式的选取要根据学校的实际情况而定。

(三)选修内容

概率统计的选修课可根据实际,开成各有侧重的课程。例如经济管理中的概率统计可以结合经济和管理专业讲述概率统计的应用,概率统计在社会生活中的应用可以侧重概率统计知识的使用等。这样做既考虑到了不同专业对概率统计知识的需求,也能照顾不同学生的需求。

三、概率类课程的教学方法改革内容

首先,教学内容要与生活实际结合。包括两方面:(1)阐述教学内容的背景知识。例如古典概型是通过掷硬币、掷骰子等赌博游戏发展而来。对背景的讲述有助于学生对概率统计知识的了解。(2)使用案例教学法。传统的教学方式注重系统性和严谨性,忽视了应用性。而实际上,概率统计中有相当一部分抽象难以理解的内容,就可以采用案例教学法。在案例分析中可以让学生体会数学建模的全过程。教学内容与实际问题结合的方式有助于学生对基本概念和理论知识的理解和掌握,有利于提高学生的综合应用能力。

其次,要注意学生能力的培养。包括两方面:(1)鼓励一题多解,培养学生的发散思维和深刻思维。鼓励学生用不同方式解决问题,当然这个过程中,重要的是先理解,然后应用。(2)讲授和讨论相结合,启发学生独立思考。在教学活动中,采用启发式、应用案例教学等相结合的教学方法,发挥教师的主导作用和学生主观能动性,注重学生的主体地位,最终提高学生分析和解决问题的能力。

最后,课程教学可以采用如下授课形式:(1)预习课1周。重温以前学过的知识,阅读教师指定的教材、参考书。(2)集中授课13周(包括习题课2-3周)。带着之前预习过程中发现的问题,有重点的听讲、练习。(3)讨论课2周。教师可提前准备几个题目,然后由小组代表和成员参与讨论。最后教师进行归纳和补充,这样每位学生对这些问题就有了全新的认识。

正如中科院院士李大潜所说:“数学的教学不能仅仅看做是知识的传授,而应该使学生在学习知识、培养能力和提高素质等方面都得到教益。”要做到这一点,教学方法的改进和教学内容的创新是关键的一环。

参考文献:

[1] 张克军.“卓越计划”下应用型本科院校概率统计课程教学改革探索[J].当代教育理论与实践,2015(6).

[2] 尹亮亮,武萌.概率论与数理统计实践教学改革初探[J].现代企业教育,2014(10).

[3] 陈俊英,曾浩宇.概率统计课程教学方法的探索实践[J].科技文汇,2014(2).

第6篇:数学概率统计论文范文

关键词: 教学方法 教学改革 概率论与数理统计

概率论与数理统计是高等院校理工科各专业的数学类基础课程.它既有严谨的理论体系,又有很强的应用性;它的内容既蕴涵现代数学思想,又包括实际问题的统计处理方法,广泛应用于工业、农业、军事和科学技术中.因此,这门课程在培养大学生的数学素养方面起着重要作用.在概率论与数理统计课程教学中,如何才能取得良好的效果?大家进行了广泛的研究与实践.本文针对概率论与数理统计课程教学中,学生普遍“学不好、学好不会用、学后易忘记”的现状,结合概率论与数理统计课程的特点,深入分析学生实际,介绍了教学方法改革的一些尝试.

一、概率论与数理统计课程教学中存在的问题

概率论与数理统计是一门非常抽象的学科,它是研究随机现象统计规律性的学科,是一门很有特点的学科.它的内容非常丰富,概念和公式多且杂,容易混淆;基本概念抽象复杂、难以理解;涉及的知识点太多,需要用到高等数学、线性代数中的许多知识.一直以来,学生学习的都是确定性的内容,突然来研究随机问题,往往感到处理问题的方法与其他数学课程有很大的差异,普遍不适应,觉得习题难做,方法难于掌握.

学生在学习概率论与数理统计的过程中,常常有两种感觉:

一是学好不会用.掌握了相关知识,除了应付考试,却不知道在实际中灵活应用所学知识,遇到实际问题时,往往无从下手.

二是学后容易忘记.学生常常反映,概率论与数理统计的公式、定理特别多,不容易记住,学起来很枯燥,即使记住了,只要几天不看,就忘记了好多.

二、概率论与数理统计课程教学方法研究与实践

为了解决这些问题,在教学中,我们着重于对基本概念、基本理论和思想方法的讲解,尽量淡化定理的严格证明,紧密结合实际背景,注重知识连贯性和系统性,从而加深对相关数学概念的理解.

1.关于概率的公理化定义

在讲解概率的定义的时候,我们在介绍了概率的统计定义、古典概型定义、几何概型定义之后,还介绍了公理化定义.若是简单的讲述,前面三种概率定义,存在种种局限性,不够严谨,为了更严谨地定义概率,从而提出公理化定义.这样的讲授,学生必然不会有什么深刻的印象,若是能结合相关实际背景,讲讲著名的贝特朗奇论,说明正是它推动了概率定义公理化的进程,则学生必然印象深刻.

第7篇:数学概率统计论文范文

关键词:概率论;数理统计;计量经济学;教学设计

从1998年教育部把计量经济学列入高等学校经济学门类各专业核心课程之一,计量经济学已经成为现代高校经管专业必不可少的核心课程[1],它和微观经济学与宏观经济学一起构成了中国经济管理类本科生和研究生的核心理论课程[2]。近20年来计量经济学课程受到了越来越多的重视,在中国大多数经济与管理相关的专业的教学大纲中,计量经济学作为本科公共必修基础课,一般都要求学生已经修完微积分、线性代数、概率论与数理统计等前期课程。事实上计量经济学的基础知识主要来自于概率论和数理统计,计量经济学的基本研究过程与概率论和数理统计是一致的,先设定模型,然后通过样本抽样,参数估计和假设检验[3]。

在计量经济学实际教学中发现,许多同学对统计学中基本概念掌握得很好,依然无法理解计量经济学的内容。主要的原因是已有的计量经济学教材缺乏引导学生从概率论和统计学过渡到计量经济学的相关知识衔接。由于学生在学习这两门课的过程中,缺失了知识点的过渡和迁移,常常用孤立和割裂的视角来看待计量经济学的内容,这无疑提高了学生学习计量经济学的困难程度。学生不知道将已有的数学知识与计量经济学相互结合,形成完整的逻辑体系。针对上述问题,本文将论述从概率论和统计学过渡到计量经济学过程中出现的知识点相互割裂的主要问题,阐述造成学生理解困难的原因,并提出相应的改进方法。

一、从概率论与统计学过渡到计量经济学出现的教学问题

虽然大多数学生在学习计量经济学之前,已经学过计量经济学的基础课程——概率论与数理统计。但学生在计量经济学学习的过程中,面临的巨大挑战是如何将已有的概率论和数理统计的知识和计量经济学中的知识点相串联。造成这一问题的原因主要有:第一,许多计量经济学中的重要知识点,在概率统计中只是简略的介绍,甚至一带而过,并未引起学生的重视。第二,许多计量经济学的教材常常忽视概率论与数理统计的知识点,这可能是由于在欧美的计量经济学课程,并不要求学生前期修过概率论和数理统计。所以中国在引进的国外的计量经济学教材后,也没有在课程上复习概率论和数理统计的相关知识。为了具体说明教学中遇到的问题,本文以本科计量经济学教学大纲中最主要的教学内容:经典线性回归的最佳线性无偏性质和违反基本假设造成的后果两个重要的知识章节作为案例说明。

(一)经典线性回归估计的最佳线性无偏性

经典线性回归估计的最佳线性无偏性是小样本理论下的普通线性回归的最重要的性质,大多数本科计量经济学教材最前面的2-3章都是介绍这一内容,例如国内最常用的教材李子奈的教材《计量经济学》[4]和国外的伍德里奇的教材《计量经济学导论:现代观点》[5]等。学生对这一内容的理解程度也将直接影响到计量经济学的后续学习。然而对于学完概率论与数理统计的同学来说,虽然他们学过随机变量的数字特征,包括期望和方差,还有n阶原点距以及n阶中心距的内容。但他们在概率论与数理统计的课程中并没有接触过无偏性和有效性的概念,事实上,就计量经济学的本质来说。无偏性就是用一阶中心距来计算,有效性则用二阶中心矩来衡量。而这两个概念在在概率论与数理统计的课程中都已经学过,但如果在计量经济学的教学中不特别加以说明,学生很难意识到两者之间的联系。学生难以理解的另一个原因在于,在数理统计课程中,关于中心矩的介绍很简略,许多学生可能并没有意识到其在计量经济学中的重要性,而计量经济学教材中往往忽视对概率统计的中心矩的介绍,导致学生采取一种割裂的视角,无法建立一个统一的思维框架。

在计量经济学的教学中,常常遇见许多同学难以理解为什么要用最优线性无偏性来衡量最小二乘法的优劣?因为大多数计量经济学教材往往直接介绍最小二乘法种种优良性质,在同学们不熟悉无偏性和有效性与中心矩之间关系的前提下,直接引入这两个概念往往显得突兀,学生在学完了线性最小二乘法的最优线性无偏性之后,仍然会产生为什么要用这两个指标来衡量的疑问。更合理的方法是,可以在介绍最小二乘法的内容之前,先介绍均方误差的概念来引入无偏性和最小方差两个概念,这与数理统计中如何衡量参数估计的性质等内容部分是一脉相承的,学生如果学过了数理统计学,就很容易理解均方误差的概念。关于这种过渡知识的介绍,已有计量经济学教材在这方面做了很好的改进,例如陈强著的计量经济学教材[6~7],與许多其他的计量经济学教材不同,他并不是在计量经济学教材中直接介绍最小二乘法具有最优线性无偏性的性质。而是在还没有引入最小二乘法之前,先介绍了如何评价参数估计的优劣,即介绍均方误差的方法,均方误差可以进一步分解成方差和偏差平方之和。偏差平方等于零就是无偏性的证明,方差最小就是有效性的证明,这种分解方法可以直观的表示为什么线性回归的最小二乘法估计会得到最佳线性无偏的优良性质。因为这种对参数估计优劣的评价是通用于所有的参数估计,而不仅仅是对最小二乘法。同学在理解了评价参数估计的方法之后,就不会再对最小二乘法最优线性无偏性的证明过程感到难以理解了,这有助于同学们理解如何从数理统计过渡到计量经济学的相关知识。

(二)违反基本假设对最优线性无偏性的影响

当违反普通最小二乘法的基本假设时,其最优线性无偏性会如何受到影响?许多同学常常依靠背诵的方法记住违反了每一条假设产生的后果,正如已有研究中所指出的[8]。这会导致学生混淆违反不同基本假设与产生后果之间的关系。古典线性回归模型是基于以下四条假设而得出的最优线性无偏的优良性质,第一,线性假定;第二,严格的外生性;第三,不存在严格多重共线性;第四,球形扰动项。事实上,在对于无偏性的证明当中,并没有用到第三条和第四条假定。第一条假定可以通过设定线性方程的形式来保证实现,一般我们可以假设其满足。所以,影响无偏性最重要的假定是第二条严格外生性。第二条假设也是最容易违反的,而且直观上并不能看出是否违反了第二条假设,也很难使用计量的统计方法来检测第二条假设是否被违反。事实上我们所有关于线性回归方程内生性的讨论,都是基于违反的严格外生性的假定而展开的。只有违反第二条假设,最终的估计才是有偏的,而违反第三条和第四条假设,并不会对估计结果的无偏性产生影响。在教学中发现,许多同学最容易犯的一个错误,就是他们常常认为违反多重共线性或者球形扰动项的假设都会影响无偏性的估计。以至于他们认为所有变量之间不可以存在任何相关性,或者认为不可以存在异方差和自相关,否则他们认为会导致估计结果有偏,这都是错误的观念。究其原因,还是因为没有理解在推导无偏性中所使用的概率论与数理统计学的相关知识。这里所需要期望的概念,同学们在数理统计中已经学过,但是另一个重要的知识点——迭代期望定律,在本科生概率论和数理统计课程中一般并不会介绍,如果在推导普通最小二乘回归的无偏性之前,先介绍迭代期望定理,则可以让同学们很容易理解整个推导过程,从而理解得到无偏性所需要的假设,并可以推导出违反不同假设对最优线性无偏产生的影响。二、统计学和计量经济学相结合的教学改进方案

上述介绍的从概率论和数理统计学过渡到计量经济学教学过程中出现的问题及原因,这些是高校计量经济学教学过程中常出现的现象。结合教学实践和相关教学研究,笔者提出以下改进的方法和建议。

总体而言,在计量经济学的教学过程当中,推荐多采用互动式的教学方法,对于一些非常新的概念和知识点,先让同学分组讨论,由此可以了解他们的概率论和数理统计的基础,并且让同学们尝试应用概率论和数理统计的相关知识推导出计量经济学的结论,在此基础上。教师可以知道学生已有的知识储备和知识缺口,同时能够很好的将计量经济学的新知识和他们的知识储备相连接,帮助学生从概率论和数理统计的知识点过渡到计量经济学的知识点,建立一个整体的知识框架,在具体实践中可以采用以下方法。

(一)计量经济学教材的选择

在计量经济学教材的选择方面,最好选用计量经济学教材在介绍最小二乘法内容之前,先复习概率论和数理统计的相关知识。虽然有些教材将这部分知识放到了附录部分,但是在实际教学过程中,往往忽略对这一部分基础知识的介绍。所以更合适的方法是先介绍完概率论和数理统计的基础知识,比如,最重要的知识点包括条件概率、条件分布、数字特征,迭代期望定理,随机变量的性质、假设检验、统计推断、大数定理和中心极限定理、随机过程等。让同学们在学习计量经济学之前能够回忆起已经学过的概率论和数理统计基础知识。尤其对学生后期进一步学习最小二乘法的性质的数学推导过程和性质非常有帮助。

(二)课堂教学的改进方案

在课堂教学方面可以采用“学生分组讨论+教师讲解+课后习题演练”三者相结合的方法,传统的教学方式往往重视教师的讲解和课后的习题演练。而忽视学生的分组讨论,虽然学生分组讨论在学生较多的时候很难开展,尤其是在总学时有限的情况下。但是,如果在课堂上给出五分钟,让同学们能够自行讨论,并反馈他们对于计量经济学推导过程的理解,将有助于老师掌握学生真实的基础知识,尤其在不知道他们掌握了哪些概率论和数理统计的基础知识的前提下,一味的介绍计量经济学的相关知识,往往无法在他们已有知识库和新的知识之间建立很好的链接。造成学生在理解计量经济学的推导过程中采用孤立的视角,无法跟他们之前的概率论和数理统计的知识点形成有效的联系,最终无法建立更加统一的知识框架和体系。

(三)教学大纲的优化方案

对于本科阶段计量经济学的教学,现有的教材在不同教学知识点的安排上并不十分合理。应该根据学生掌握的概率论和数理统计的基础情况,提出更合理的计量经济学的教学大纲。比如,从目前国内比较流行的计量经济学教材来看,往往会花很多笔墨来介绍小样本理论的普通最小二乘法的推导过程和相关性质,尤其是在违反了不同假设之后所导致的不同后果。许多教材都会介绍当扰动项存在异方差和自相关时,会产生什么样的后果,并提出多种不同的解决方法。但在计量经济学的实际应用当中,这两种违反假设产生的后果并不十分严重,在使用计量软件进行回归处理的方法非常简单。这与实际教学中所花费的学时不相符。另外,在计量经济学的理论教学中,往往会花很多时间来介绍多重共线性对于回归结果产生的影响,但在实际应用当中,我们并不经常讨论多重共线性的问题,除非是存在着非常严重的多重共线性,因为当建立回归的模型时,我们就会考虑变量之间的多重共线性问题,尽量避免使用多重共线性很严重的变量。而不是通过后期的测量多重共线性的方法来删除相关变量,因为如果该变量纳入到回归方程中,一般情况下我们首先应考虑其理论意义,而不是为了降低多重共线性将其删除,如果删除一个相关的变量,则有可能会因为删除一个重要的控制变量,导致最终的回归结果产生偏误,最终反而得不偿失。

上述内容越来越被计量经济学的研究者所认识到,目前,计量经济学正发生可信性革命性[9]。传统的计量经济学教材需要在相关的教学内容上做进一步的调整,以适应计量经济学的不断发展和变化[10]。所以对于在一些理论上推导复杂,但是实际应用中简单的相关知识,应当在教学中多介绍概率论和数理统计的相关知识来推导模型,并说明推导过程中违背假设所导致的后果以及实际处理方法,如果学生能够运用概率论和数理统计的相关知识来理解不同的假设条件下的推导过程,将对他们在实践中处理各种计量经济学的相关问题大有裨益。

第8篇:数学概率统计论文范文

关键词:概率论与数理统计;数学建模;案例教学

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2017)01-0105-02

引言

利用数学基础知识抽象、提炼出数学模型的过程就称为数学建模[1]。数学建模是指针对实际生产生活中的特定对象,为了特定的一些目的,通过一定的数学知识与数学思想,对研究对象做出简化和假设,以此对实际问题进行抽象。数学模型的建立要求建立者针对实际问题,合理地应用数学符号、数学知识、图形等对实际问题进行本质并且抽象地描绘,而不是现实问题的直接翻版。

概率论是一门历史悠久的学科,产生于赌博中的问题,现在早已经发展成为了研究随机现象及其规律的一门数学学科。概率论与数理统计分成了概率以及统计两大部分,是各类高校必修的重要基础课程之一。概率论与数理统计中所涉及的学习方法和学习内容,与后期将要学习的随机过程、计量经济学、微观经济学、时间序列分析等课程息息相关,是学生学习这些后续课程的理论基础。概率论与数理统计在社会生产生活的各个领域都有着非常广泛的应用[2]。但是,不少学生感到概率统计课程的概念听起来似乎不难理解,但是一遇到实际问题就不知道该如何入手,思维难以展开,所学的分析方法与概率思想很难与自身专业联系起来。针对现在的教学现状与学生所遇到的实际困难,作为高等教育的工作者,我们能做些什么呢?将数学建模思想融入到概率统计教学中,在抽象、枯燥的概率统计教学过程中,穿插一些与学生专业相关的或者在实际生产生活中常见的问题,对其进行数学建模,同时进行分析和求解,不仅能够帮助学生更好地理解与掌握理论知识,而且也能在很大程度上提高学生的学习兴趣,并且能够帮助学生提高解决实际问题的能力。

现在的数学教育工作者已经越来越重视数学建模与案例教学,并为之采取了诸多相关的教学改革措施。例如,不少高校都越来越重视数学建模竞赛并积极参与其中,同时许多针对高校教师的教学竞技比赛也都专门设立了数学建模或案例教学的竞赛,这些都在一定程度上给予了教师一定的导向性。

概率论与数理统计作为概率论、数理统计以及计算数学等学科形成的交叉性、应用性学科,怎样做才能与数学建模的内容相结合呢?如何将数学建模的思想与方法更好地介绍给学生?如何让学生学以致用,将概率统计的内容与自身的专业特色相结合呢?概率统计中有哪些知识点可以与数学建模相结合呢?除了常见的贝叶斯公式、数学期望的概念、方差的概念、乘法公式、条件概率、区间估计、点估计等这些常见的知识点,还有没有一些其他的知识点能与数学建模融合在一起呢?除了闭卷考试以外,还能采取什么样的考核评价方式呢?这些问题值得我们思考。

一、概率论与数理统计课程中融入数学建模思想的必要性

在概率统计课程的教学中,作为教师首先必须明确教学的中心任务是引导学生从传统的确定性思维模式进入随机性思维模式,使学生掌握处理在实际生产生活中出现的随机问题的数学方法。运用概率统计思想理论和方法可以建立各种不同的数学模型。在概率论与数理统计的教学过程中,适当增加数学建模内容的教学,既符合教育改革的要求,也顺应了时展的潮流。

当然,在概率论与数理统计的教学过程中,我们应该分清主次,不能舍本逐末,应该控制好基础理论教学与应用教学之间的比例。在确保完成概率论与数理统计基础理论教学的同时进行数学建模讲授。理论是基础,应用是目的,融入是手段。没有理论知识作为基石,何来的应用创新?

二、提高教师的数学建模能力

大学数学教学中教师具有重要的作用,只有教师对课程内容有全面的深刻的理解才可以达到有效的教学。要求教师将数学建模思想和内容穿插到概率统计教学中去,首先需要解决的是教师自身的数学建模能力的问题。作为数学教师应随时关注各类建模比赛,全身心地投入到各类数学建模比赛的指导与培训工作中,在实践中丰富自身的数学建模知识,亲身体会数学建模的过程。通过在比赛中与学生的沟通与接触,了解各个不同专业学生的真实想法,弄清学生的疑惑,在指导学生比赛的同时丰富自己的教学经验。有条件的高校,可以定期举办数学建模的培训与讲座等,不断更新教师与学生的建模知识。

运用概率统计思想在实际建模中以实际问题为研究对象,利用数学期望的概念、贝叶斯公式、方差的概念、二项分布的概念、中心极限定理、参数估计、假设检验、回归分析等理论,可以建立各种不同的数学模型,从而解决不同的实际问题。例如,对生产产品的抽样检验、质量管理、风险评估、成绩评估、运动员综合水平的测评等等进行分析,都需要用到概率论与数理统计的相关理论和方法[3]。由此,不难发现数学建模内容涉及的知识面十分广泛,这无疑会对教师和教学单位提出更高的要求,如何收集和丰富教学案例的内容,成为了每所高校及每位教师所必须面对的问题。没有不断更新的案例,何来与时俱进的数学建模的教学呢?相关教学单位可以通过奖励机制比如设立教改基金项目等措施,鼓励数学模型与案例的收集建设,为广大数学教师的发展提供有力支持[2]。

三、更新教学手段、体现建模思想

在概率论与数理统计课堂教学中,可以通过案例教学来讲解数学建模,提高学生分析问题和解决问题的能力。教师可以引导学生直接从案例出发,将实际问题数学化,然后利用概率论与数理统计的知识解决实际问题,在解决具体问题的过程中灵活地引出相应的方法和理论。在案例教学的过程中,可采取灵活多样的学习方式,比如分组讨论,通过查找资料,自主建模等来体现学生的主体地位。教师总体把控,适时引导,合理掌握整体布局,避免出现冷场、跑题等现象[4]。前不久,在吉林大学召开的“第二届(2016)全国高校数学微课程教学设计竞赛”中,就专门设立了案例教学竞赛,这无疑为推动数学建模以及案例教学的发展提供了一个很好的导向。

授课老师应充分利用各种现代化信息手段,采用多媒体教学。在信息化时代,各种数学软件是必不可少的可以实现或论证建模结论的有力工具。可以考虑在概率论与数理统计课程中增加实验教学环节,讲授Mathematica,SAS,Spss等软件。有条件的高校,还应该定期对数学教师进行培训,使其掌握相关软件发展的最新方向与动态。

在设计学习评价指标时,教师可以尝试一些除闭卷考试之外的考核方法。对概率统计的基本概念、理论和计算采取闭卷考核方式,而针对综合性、应用性强的案例应采用开卷考核形式。亦可采用概率统计知识与计算机软件相结合的方式对学生进行考核[5]。同时可以考虑进行校内各专业之间的数学建模比赛等。

结束语

将数学建模思想融入概率统计教学中对于进一步推进概率统计教学改革,提升学生学习数学的兴趣,提高学生应用数学解决实际问题的能力,具有重要的促进作用。目前,在概率论与数理统计课程中融入数学建模的思想已经引起了越来越多的相关教学工作者的重视。作为数学教师应当把握融入数学建模思想的基本原则,合理分配基础理论教学与实际数学建模教学的比例。在对学生进行基础理论教学的同时将创新思想、建模思想融入到概率论与数理统计的课程教学过程中,使得概率统计课程能够更好地适应经济快速发展的潮流,更好地服务于社会。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2011.

[2]向小红.数学建模思想的概率统计学探讨[J].中国科教创新导刊,2012,(35):57-58.

[3]刘卫锋,周长芹.数学建模融入概率统计教学存在的问题与对策[J].高师理科学刊,2013,33(2):85-87.

[4]王芬,夏建业,赵梅春,刘娟.金融类高校高等数学课程融入数学建模思想初探[J].教育教学论坛,2016,1(1):156-157.

[5]刘琼荪,钟波.将数学建模思想融入工科“概率统计”教学中[J].大学数学,2006,22(2):152-154.

The Brief Discussion of the Combination of Probability Statistics Curriculum and Mathematical Modeling Thought

WANGFen,XIA Jian-ye,LIU Juan

(Department of Applied Mathematics,Guangdong University of Finance,Guangzhou 510521,China)

第9篇:数学概率统计论文范文

关键词:应用 特色 研究 探索

中图分类号:G71 文献标识码:A 文章编号:1672-3791(2016)01(a)-0000-00

1 引 言

概率统计课程是高等工科院校最重要的基础课之一,随着高新科技的不断发展,概率统计的地位与作用日益提高。概率统计已经不仅仅是学习后继课程和解决科技问题的工具,而且是培养理性思维的重要载体,成为科技人员科学水平、科学素养的重要组成部分,成为人才竞争中强者的翅膀。因此,概率统计课程在高等学校中的地位和作用也在不断地提高和增强。目前,不仅在理工类专业中广泛开设了概率统计课程,而且在农、纺织、经管类,甚至在文科类专业中也已增设概率统计课程。同时,概率统计科目也是大多数专业考研的必考科目。

在高等工科院校中,概率统计是体系较完整的课程,因此也是培养学生逻辑推理能力、抽象思维能力的最好课程。但从数学教育的现状分析,我校的数学教学特别是概率统计的教学无论从教学体系、教学内容、教学手段、教学设备等方面都比较陈旧了,教学思想和教学观念还滞后于时代的变化和社会的发展,新形势的概率统计教学充满了机遇和挑战。适应于一般应用性本科院校的实际需求,对概率论与数理统计课程从内容到教学方法和教学手段进行全方位的改革与探索是完全必要的,如计划的顺利实施,必将会提升我校概率论与数理统计课程的教学质量,并为我校培养高素质的技术人才提供重要的理论和实践基础。

2..研究措施

(1)修改教学大纲

重新整合教学内容;重新修改教学大纲,要淡化一些理论色彩较浓的比较抽象的内容,比如在第一章随机事件与概率中全概率公式、贝叶斯公式推导,理论性较强,这部分证明可简化,而在第一节随机试验与随机事件中添加些金融保险的例子,开阔学生的应用概率统计的思路,使得学生在学这门课一开始就明白,我们学概率统计后,不仅仅是知道几个数学公式,会解两道题目,更重要的学会把概率统计的知识应用到工程实践和现实生活中。新的大纲既保证较完整的基础知识,又要加强实用性技能的训练,更加适合为工程一线培养技术人才的应用性本科层次的需要。

(2)修订教材

概率统计教材计划在使用3年以后进行修订,根据编者从事该课程近三十年的教学实践和体会,充分吸取使用本教材的校内外广大教师和学生的意见和建议,对本教材的内容和体系进行系统的修订。教材修订的重点是内容的更新,同时进一步完善教材的体系结构,使取材更加精炼,表述更加准确,实例更加丰富,文字更加流畅。将其打造成为一本精品教材。

(3)修改助学课件、编写学习指导书

编写教材配套的助学课件和学习指导书,组织骨干全体教师的充分酝酿,确定了教材建设的基本思想是提高教学的整体水平和学生的培养质量,制作的助学多媒体课件、编写的教学指导书具有可读性、针对性、适用性,强调解题思路及方法,引导学生深入学习和思考,指导书初定为九章,每章内容结构为:基本内容,例题分析,综合练习和自测试题四个部分,书末附综合练习和自测试题的答案,从而使学生学好概率论与数理统计这门课程。

(4)加强试卷库建设

为了加强教风和学风建设,为了保证了考试的规范性、公正性、科学性,为了科学公正地评价教学质量和效果,期末考试全面实施教考分离。首先要根据新形势、新要求修订概率论与数理统计试卷库,统一考试要求。其次在教考分离的实施过程中力求规范,试卷库由教务处随机抽卷,评阅全部采取流水阅卷,整个考试过程尽量减少人为因素的影响,形成一套科学的、规范的、严格的考试制度。

(5)积极指导学生参加创新项目研究

随着时代的进步,科技的不断创新,数学在现实生活中应用越加广泛,而概率统计作为数学的一个重要组成部分,也被广泛的应用于生活中的不少领域。在现实生活中,消费者总是面临着风险下的选择。为了规避风险消费者便会采用购买保险的方式来将损失降低,保险公司应运而生。然而我国的保险事业起步较晚,虽然随着改革开放深入发展,保险业有了巨大的发展,仍面临富于经验、实力雄厚的外国保险公司的激烈竞争,因此提高自身竞争力,将风险的防范和测度分析置于保险公司经营运作的重要位置,是我国保险业发展的首要问题。概率统计是保险公司常用的一种预算方法,它有效地平衡保险公司与消费者的利益关系,增加保险公司自身的竞争力。给公司的运行与发展提供了强而有力的保障。我们可以指导学生研究保险、金融等统计模型,鼓励他们研究探索,指导他们写学术论文,鼓励他们投稿,争取公开发表。

(6)加强网络教学

组织年青老师,修改课程网站,新网站将有课程介绍、教学大纲、教案或演示文稿、重点难点指导、作业题详细解答、试题库样卷等内容。

根据单招、合资班不同特点,给出复习题,便于同学复习。在网站上开设师生互动栏目,公开讨论问题,研究概率统计在生活中的应用.

3.结束语

在概率论与数理统计教学中强调应用,理论联系实际,教会学生用它来解决问题,是我们今后改革的重点,但如何将改革工作做好,任重道远,我们将不断创新、不断研究与探索。为早日把我校建成一流的应用性本科院校而努力。

参 考 文 献

[1] 韦俊等. 概率论与数理统计 南京:东南大学出版社,2014