公务员期刊网 论文中心 数学论文范文

数学论文全文(5篇)

前言:小编为你整理了5篇数学论文参考范文,供你参考和借鉴。希望能帮助你在写作上获得灵感,让你的文章更加丰富有深度。

数学论文

第1篇:数学论文范文

1.文艺复兴时期的数学与艺术———合作巅峰

经过了漫长的中世纪,欧洲于13世纪末进入了文艺复兴时期,艺术在人文主义和科学思想的双重影响下蓬勃发展。为达到真实反映现实的目的,画家们面临着一个急待解决的数学问题———如何把三维的现实世界描绘在二维画布上?1435年,意大利画家、建筑学家、数学家、文学家阿尔伯蒂出版了《绘画论》一书,对基于透视几何学的焦点透视画法进行了科学的系统化。他认为大自然是艺术创作的源泉,数学是认识自然的钥匙,艺术的美就是和自然相符合。意大利画家、科学家达•芬奇用艺术家的眼光去观察自然,用科学家的精神去探索自然,深邃的哲理和严密的逻辑使他在艺术和科学上都达到了顶峰。达•芬奇在线透视与色透视的基础上,创立了透视学的第三个分支———空气透视;同时他还创作了许多精美绝伦的透视学作品,其中最优秀的当属《最后的晚餐》。透视几何学的诞生和应用,使得数学和艺术的融合达到了一个里程碑式的高度。波兰数学家、天文学家、法学家、医生、牧师哥白尼经过长年的观察和计算,在1543年发表的《天体运行论》中提出了“日心说”,沉重打击了教会的宇宙观。近100年后意大利物理学家、天文学家伽利略以《星际使者》《关于太阳黑子的书信》等著作有力地支持了哥白尼的“日心说”,奠定了近代实验科学的基础。哥白尼和伽利略两人的研究成果逐渐瓦解了传统上神学、科学、哲学之间的统一关系,为近代自然科学的发展铺平了道路。

2.近代思想启蒙运动中的数学和艺术———渐行渐远

发端于17世纪中叶的思想启蒙运动揭开了欧洲近代史的序幕,启蒙思想家们力求探索推动人类社会不断前进的永恒法则。1665年,英国数学家、物理学家、天文学家、哲学家牛顿,德国数学家、历史学家、法学家、哲学家莱布尼兹各自独立地创立了具有划时代意义的“微积分学”,彻底改变了数学概念绝大多数来源于直观的经验模型的面貌,开始更多地依赖于思维的构造。微积分学随即成为现代物理学、化学、天文学、生物学和地理学等众多自然科学和工程技术的基础理论方法,而且还广泛应用于经济、管理、语言、政治、艺术设计等人文社会科学领域。在微积分的基础上建立起来的点集拓扑学与泛函分析等各个现代数学分支日趋逻辑化和抽象化,也远远走在了所有现代数学应用领域的前列。1750年德国美学家、哲学家鲍姆嘉通出版了一本学术专著《美学》,宣告了美学已确立为一门独立学科。他将美学定义为“感性认识的科学”,认为“科学研究的初衷是追求真,而艺术研究的目的是创造美”。与之同时代的德国哲学家、思想家黑格尔在其1817年出版的《哲学全书》中宣称,“艺术的内容就是人们内心的理念,艺术的形式就是诉诸感官的形象”。至此,人们对于数学和艺术更多的是强调它们之间的差异:数学作为自然科学的基础,主要遵循逻辑思维的原则,达到了理性认识的巅峰;而艺术作为人文精神的代表,主要运用形象思维的方式,达到了感性体验的极致。在鲍姆嘉通和黑格尔的指引下,艺术与现代数学都孤单地迈上了相对独立的发展道路

3.近现代社会中数学与艺术的重新融合之路

进入20世纪,人类历史翻开了崭新的一页,人们的生活状态和思维方式也发生了深刻的变革。1945年美籍奥地利人、生物学家贝塔朗菲发表了《关于一般系统论》的论文,从此人们开始以整体性的观点来分析系统、要素和环境三者之间的互动联系和变化规律,科学与艺术的基本原理、工作对象、研究方法等各个方面都重新开始互相渗透和融合。就像英国学者马丁•约翰逊在《艺术与科学思维》一书中所指出的那样,“科学家与艺术家,他们虽然岗位不同,但在各自工作中所追求的目标是相通的,他们实际所采用的工作方法比他们实际所承认的有着更多的相同之处”。根据思想倾向和艺术风格的不同,20世纪以来西方现代艺术史上形成了各种各样的艺术流派。西班牙画家、雕塑家、剧作家、诗人毕加索的名作《亚威农少女》,引发了立体主义运动的兴起。立体派比较关注如何运用几何原理和数学概念来革新传统的艺术形式,表现生活在迅猛变化的工业社会里的人们内心的期待、躁动、彷徨与失落。而抽象派则尝试打破绘画必须模仿自然的艺术观念,主张以抽象的几何图形为绘画的基本元素,来构造普遍的现象秩序与均衡美感。抽象派的先驱、荷兰画家蒙德里安的代表作品《灰色的树》,通过直线与直角的“纯粹造型”达到了人神统一的“绝对境界”。说到20世纪的艺术界,必须提及荷兰的埃舍尔,他是如此的特立独行,甚至至今都无法将他归属任何一个流派。埃舍尔一生钟情于镶嵌艺术的研究与创作,他从圆、正三角形、正方形、正六边形等基本几何图形出发,连续多次地利用欧氏几何里的反射、平移、伸缩、旋转这四种基本变换,使得基本几何图形扭曲变形为虫、鱼、鸟、兽、人物、花朵、魔鬼与天使等镶嵌图案。后来,埃舍尔从读到的非欧几何、拓扑、分形几何等数学思想中再次获得了巨大灵感,使镶嵌艺术达到了鼎盛状态。在埃舍尔创作的那些充满现代数学气息的镶嵌艺术作品中,例如《红蚁》《瀑布》《鱼和鳞》《观景楼》,我们看到了一个个神秘莫测的神话世界。如果说,非欧几何直接造就了埃舍尔辉煌的镶嵌艺术,那么分形艺术则充分展示了后现代主义的艺术风格。为了表现变幻的云朵、蜿蜒的河流、神秘的星系和粗糙的断面等自然形态,1975年数学家、计算机专家芒德勃罗出版的《分形:形状、机遇和维数》一书,宣告了分形几何的诞生。在审美情趣与科学内涵完美融合的分形图形中,厚重的思想随着时间消逝,流动的秩序在平面上涌动,主体裂成碎片丧失了中心地位,艺术通过计算机复制走向大众化。虽然分形图形具有复杂的结构,但总是可以利用简单函数无限迭代而成。这个特征使得分形广泛应用于各个艺术领域,尤其是装饰设计方面,如早期的贺卡、壁画、明信片、书籍封面,以及现在的电信卡、购物卡、文化衫、广告画面等。北京服装学院高绪珊教授率领的团队将分形理论应用于纤维制造流程,创造了多维高仿真长丝SFY,使人造纤维呈现出“龙缠柱”般的天然纤维风格。

二、教育工作者的深度反思———和谐发展

我们已经截取了西方艺术发展史上四个重要的阶段作为载体,简要地阐述了数学和艺术之间关系的来龙去脉。了解这一点,对于教育工作者有什么实际意义?美籍华裔核物理学家吴健雄曾经指出:“为了避免出现社会可持续发展中的危机,当前一个刻不容缓的问题是消除科学文化和人文文化之间的隔阂,而为加强这两方面的交流和联系,没有比大学更合适的场所了。”近20年来,教育界的有识之士反复提出这样一个问题:我国作为一个世界“大工厂”拥有庞大的工程师队伍,可是为什么国内大多数行业仍旧处于世界产业链的底端?答案是明显的,我国目前缺少真正意义上的大师级别的科学家和艺术家,既不能开发尖端的突破性的核心技术,也不能设计前卫的独创性的艺术模式。那么,为什么会出现这种令人尴尬的局面呢?现行教育体制或许应当担负起一定的责任。我国的教育注重知识灌输、忽视能力培养的教学方式姑且不论,还在高中阶段就过早地文理分科,大学阶段专业划分过细,理工科学生不用学习如何欣赏艺术,而艺术类学生也不会主动关注数学。久而久之,在知识结构、认知行为与创造能力等方面产生明显的断裂是必然的。值得欣慰的是,2014年教育部已经宣布了高中不分文理班的政策,这是朝着“理性回归”迈出的第一步。可以期待,未来大学的一二年级将不再划专业,而进行“通识教育”。如此一来,方有可能造就逻辑思维能力和形象思维能力和谐发展的人才。数学和艺术的融合,从哲学上讲,源于它们共同的追求———普遍性和永恒性,以及在数学研究和艺术创作过程中共同的付出———智慧和情感。“数学求真,艺术求美”,因为只有真和美才是普遍的和永恒的。古希腊人认为“美是真理的光辉”,美和真实际上是统一的。数学和艺术的融合其实就是“艺术的数学化”和“数学的艺术化”。对于艺术的数学化,大家其实并不陌生。且不说生活中普遍存在的“分形艺术”,美国商业电影《阿凡达》开启了一个广泛意义上的“计算机艺术”的新时代。从键盘输入设计巧妙的数学算法,线条、色彩、形态、结构等艺术元素连续地变换与组合,具有梦幻效果的艺术作品就神奇地显示在屏幕上了。相信这会对现代艺术的创作风格、传播方式和评价体系等方面产生深刻的影响。对于数学的艺术化,可以像北京科教频道的纪录片《宇宙大探索》那样,用艺术化的浪漫方式来阐述深奥的宇宙演化理论。在“高等数学”课程的教学过程中,也要尽量把抽象的数学概念和深刻的数学思想进行艺术化的处理,让课堂始终充满着幽默风趣的气氛,激发学生的好奇心和共鸣感。一方面拿一些经典艺术素材来表述,发挥艺术作品形象直观的优势,加强理解的深度和广度。比如在讲授极限理论时,不妨利用俄罗斯套娃来演示无穷数列的变化趋势,然后借用宋代叶绍翁的诗句“满园春色关不住,一枝红杏出墙来”来解释无穷与无界的区别。比如在讲授透视几何时,可以播放一段我国的传统艺术皮影戏来引起学生对于透视原理的兴趣,然后引导学生从数学的角度来欣赏达•芬奇的《最后的晚餐》。再比如讲到傅里叶级数时,先通过计算机播放一段舒缓的贝多芬的《田园交响曲》,让学生观察MediaPlayer上显示的声波的简谐振动,然后让学生课后查阅毕达哥拉斯用数学方法研究音程和音律之间关系后建立的音乐理论。另一方面,要充分挖掘高等数学本身蕴涵的五大审美因素———简洁之美、对称之美、统一之美、奇异之美和运动之美。数学之美是一种通过赏心悦目的数学结构呈现的人类思维方式,是一种超越视听感觉的“抽象美”。要引导学生在学习数学概念、定理的过程中,发现与领略数学之美;在解答或证明数学问题的过程中,追求与创造数学之美,进而对数学产生浓厚的兴趣和强烈的感情。

三、结语

第2篇:数学论文范文

在教学有关“圆”的知识时,教师可以举例,把“圆”比作太阳、苹果等有形的东西,加深学生对“圆”的认识。教师还可以利用多媒体来展示和我们的日常生活有紧密联系的有关“圆”的东西,如水面上激起的涟漪,既有静感又有动感,使学生如身临其境,有所感触,比教师单纯在课堂上用圆规画圆要形象得多、生动得多、鲜明得多。这样的课堂教学自然能激发学生的学习兴趣,使学生深刻感受到数学的美。

二、让学生学会鉴赏,在鉴赏中感受数学的“和谐美”

美是人们所向往和追求的,美感不但体现在艺术领域,在数学教学中也有一定的美。所以,教师要教给学生如何发现和鉴赏数学之美,要让学生学会用审美的视角来观察数学,深入挖掘数学的结果美、过程美。首先,教师要引导学生树立在数学中发现和鉴赏数学美的观念,调动学生的积极性。例如,在讲解“黄金分割”时,学生一开始会很陌生,不知道什么是黄金分割,这时,教师可以让学生测量一下自己身体的黄金分割点,并讲解有关黄金分割点的意义,让学生在实际生活中去找黄金分割点。这样,学生自然会发现其中存在的美感,从而产生浓厚的学习兴趣,由被动学习变为积极主动学习。再如,教师在讲授数学应用题时,可以借助线段图形让学生理解题意。学生在线段的引导下既能理解应用题的题意,又能感受到数学知识的系统性和关联性,感受到数学深层次的体系美。总之,数学的美体现在方方面面,只要教师善于引导,使学生树立发现美的观念,就一定能使学生感受到数学的美。

三、让学生在游戏中体验数学的“趣味美”

传统的数学教学过分重视知识,缺乏对学生能力的培养,主要以教师为中心,学生只是被动地接受知识,严重抑制了学生个性的发展。新课程改革对数学教学提出了更高的要求,对教学方式进行了大胆的改革和创新,更加注重学生的参与性和主动性。所以,数学教师应转变教学观念,尽量让学生积极参与到数学教学中。其中,一种重要的参与方式就是让学生在数学课堂上参与游戏,在游戏中感受数学的趣味美。实践证明,游戏的方式是学生最喜欢的教学方式之一,既能使学生在游戏中学到知识,提高能力,又能给枯燥的数学课堂增添乐趣,调动学生的学习积极性。例如,在教学“对称、平移与旋转”时,教师可以采用做“跳棋”游戏的方式,让学生分组进行游戏,学生在跳棋的游戏中自然而然学到了数学知识,并且会印象深刻,不容易忘记,这样还可以提高学生的智力,增强学生的合作创新精神,还能使学生感受到数学的趣味美。

四、结语

第3篇:数学论文范文

操作中学习,或称做中学,是着重寻找解决问题过程的学习方式,是一种探索和研究的活动,是一名学生进行数学思考的历程.美国数学家哈尔莫斯指出:“学习数学的唯一方法是做数学.”《数学课程标准》指出:“学会与人合作,并能与他人交流思维的过程与结果.”做中学不仅是个体的学习过程,也是进行小组合作学习的有效途径.数学活动不仅是传授知识的过程,也是创造机会让学生自主探究的过程.学生只有在自己亲自动手探索的过程中,才能对物质材料有充分的感知和兴趣,才能对材料有所发现和疑问.数学探究的意义正在于学生动手动脑主动操作、体验与思考的过程.例如苏教版一年级“认钟表”一课,我就把认钟面改为做钟面,小组合作来完成.我准备了学具,每个小组都有一个硬纸片,印好时针与分针,一个圆周,里面有12个均分的点.我让4人小组合作,组长安排,做个钟面.合作开始了,只见有人剪时针,有人剪分针,有人剪外形,有人写数字,组装成了一个钟面.学生在制作钟面的过程中,了解了钟面有时针、分针和秒针,明白了钟面上有12个数字,均匀地分割了整个钟面.学会了你做一部分,我做一部分,再整合成一个钟面的合作过程.在这个过程中既有知识的渗透,也有合作中人际关系的处理,学会在小组中发表见解和倾听小组同学的意见.儿童心理学的研究表明,操作不是单纯的身体动作,它应该是与大脑的思维活动紧密联系着的,能让他们亲手接触、亲自动手的事情记忆会更深刻.操作学习中和同伴的交流也会更加自由,而同伴或老师的不同看法和解决问题的不同方式能促进学生不断思考,完善自己的想法或建构新策略.因此我们应给学生更多自己动手操作的机会来经历数学,例如可以通过制作长方体、正方体等感知几何图形,通过剪纸学习对称,通过制作年历感知和学习年、月、日的相关概念等.操作中学习,能帮助学生更深刻主动地经历数学,提高学习的有效性.

二、生活中学习———经验迁移

陶行知说过:“生活即教育.”生活本身就是一个巨大的数学课堂,小学数学教育理应回归到儿童的生活中去.荷兰教育家弗赖登塔尔说:“数学来源于生活,也必须植根于生活.”紧密联系学生的生活实际,让数学从生活中来,到生活中去,是数学课程改革的重要理念之一.我们不妨结合课堂教学内容捕捉生活现象,采撷生活实例,把学习与儿童自己的生活充分地融合起来,让学生感受到数学处处与生活同在.同时新课程标准强调数学与现实生活的联系,而且要求“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发”,因此我们必须关注学生的生活,他们在学校之内、之外都做些什么事情,对什么比较感兴趣.

1.在生活中发现数学

让学生根据自己现有的知识水平在生活中经历“数学发现”,会使抽象的数学变得通俗易懂,让课本上的“数学”和孩子们变得更加贴近,使学生们更加主动地去学习数学,会发现一些新的数学内容.作为教学主导者的教师也要善于发现生活中的数学素材.如教室排列的座位、体育课上的队列、本教室在学校各个教室中的相对位置等;生活中到处可见的几何形体,门、柱子、柜子、各种球等;人们生活中的吃穿住行包含着许许多多的数学问题.假如能把这些生活中的数学问题搬进课堂,学生们就会感到非常真实、有趣,同时学生们也会充分地认识到数学并非枯燥无味,会感到数学就在他们身边.生活中的数学发现不仅是一种数学学习的“预习”或者“复习”,它更是数学知识建构的桥梁.如寻找生活中的几何图形,联系生活中实际事物的过程使几何表象更加清楚,有利于建立对应的几何概念.

2.在生活中解决问题

让学生运用学到的数学知识解决生活中的实际问题,是数学教学的目的.华罗庚说过:“宇宙之大,粒子之微;火箭之速,化工之巧;地球之变,生物之谜;日用之繁,无处不用数学.”数学源于生活,课本上的数学知识都可以在生活中找到它的蓝本.在生活中解决数学问题,使得单一的数学练习更富有现实意义,也更加有综合性,可以说是更多地还原了数学的本质.如让学生记录自己和家人的一次超市购物过程:买了哪些东西,单价多少,每种物品花了多少钱,总共花了多少,什么东西最贵/便宜,吃的物品有几种,用的有几种,等等.这样一个过程涵盖了多个数学知识点,不仅是加减乘除的练习,也是统计等概念的渗透.另外,我们也可以让学生计算家里一年的水电费,了解水电费的计费方式;记录并计算出行、旅游的交通费用;学习比例时,将自己家房屋结构平面图画出来;学习平均数,可以统计班级各科考试的平均分等.如下面两道题就是很好地利用生活资源来进行数学学习的案例:

(1)在下面的括号里选择合适的单位、数或词语填在横线上.你的身高是138(米、分米、厘米),体重是36(吨、千克、克),你每天步行去上学从家到学校要走20(时、秒、分),你每分钟走50(千米、分米、米),你的家到学校有(100、1000)米,来回一趟要走2(千米、分米、米).如果学校8:45上课,你8:30离家去上学,你(一定、可能、不可能)会迟到,因为.

(2)请你计算一下你家客厅的面积.如果客厅用边长为5分米的正方形地砖铺设需要多少块?

3.在生活中养成数学眼光

第4篇:数学论文范文

1.1教学课时过多,学生独立思考的时间少,很难激发他们的创造力

由于专业课的课时设置得过多,使得学生个人自学、独立思考的时间变得很少,留给学生自由发挥的空间也很少,很难激发他们的创造力。一直以来,我国的高等教育的主要目的是培养教学型人才和科研型人才,而当前的数学与应用数学专业的教学模式和课程内容都呈现出陈旧老化的状态,已经不能适应当前社会对新型人才培养的要求了。无论在哪种时期,经济理论都是为当前时期的经济建设和发展而服务的,是为指导当前时期的经济活动而服务的,而教育体制的改革常常滞后于经济体制的改革,导致教学内容很难满足现阶段的市场经济发展的需求。

1.2不够重视课外动手能力的培养环节,设置的实践环节层面不高

纵观现阶段我国的数学与应用数学专业的教学实践来看,还存在很多有待改进的地方,主要表现为学生学习课堂知识的环节设置很多,而动手实践的环节设置很少,培养其创造能力的环节设置更少。因此,要对现阶段的教育模式进行调整,改变传统的学生听老师讲的方式,而是多创造师生之间交流探讨的机会。客观条件的限制也会影响教学模式的改进,有些学校由于一些客观原因只能以传统教学方式为主,使得教学质量得不到很大的提高,学生创造水平的发挥也受到了限制。

2.对于数学与应用数学专业的人才培养教育方案的探讨

2.1明确数学教学的目标,改进教学模式,及时更新教学内容

实现教学目标的创新,要从以下三点入手:一是从注重知识结论变成注重知识体系的构建;二是从注重知识传授变成注重能力培养;三是从注重技能训练变成注重思维训练。实现教学模式的改进,首先,要做到将教学模式从以教师为中心转变为以学生为中心;其次,将教师的灌输性教学转变为协作互助的教学模式;再者,从纯教学知识讲解的模式转变为以培养学生逻辑思考能力和创新能力为主的模式。以此来实现课堂模式从“一言堂”向“群言堂”的转变,调节课堂气氛,鼓励学生积极发言,说出自己的见解和观点,形成自己的逻辑思维,才能激发他们的好奇心,培养创新精神。在教学内容上,要注意将经典性与现代性相结合,将学科性与专业性相结合,提高课程的实用性,检验学生的认知水平和实践能力。

2.2完善数学课程体系,开设选修模块,发展学生的个性

数学与应用数学专业课程体系的建立是由专业定位和社会需求所决定的,并在具体的实施过程中不断完善和改进的。课程体系的建立是基于“三和模块,四个平台”的构件,三个模块是指专业选修模块、能力拓展模块以及素质拓张模块,四个平台是指公共教学平台、专业教学平台、学科教学平台以及实践教学平台。在课程体系的设置上,要从学生的后续发展出发,为其以后的发展奠定扎实的理论基础,增加应用数学类的学时数,培养学生初步运用数学知识的能力。

2.3培养学生的创造力,重视应用型人才的培养

培养数学与应用数学专业学生的创新能力是我国培养教育的一个全新领域,还有很多问题需要去研究和探讨。现阶段在数学与应用数学专业所实行的新能力培养模式还不够完善,存在很多弊端,例如,很多学校还在使用灌输式教育模式,忽视了训练学生的独立思考能力和批判性思维,使学生处于被动地位,难以为其创造良好的个性发展空间。在培养数学与应用数学专业学生的创新能力的过程中必须突出“创新”,高校要采取相关措施,努力适应社会变革和科技发展的需求,不断更新教育观念,改革教育体制。实现教育模式从应试教育向创新教育和素质教育的过渡,培养德智体美劳全面发展、生理心理健康发育、社会适应能力强的复合型和创新型人才。更好地为我国的社会主义现代化和经济建设服务。

2.4提高实践教学环节的设置层面,突出人才的素质培养

实践教学体系由能力拓展平台以及实践教学平台两部分组成,其中,实践教学平台又可分为实验与实训、综合训练课程、各类实习等。随着近年来数学建模教育的普及,数学建模对于增强学生的实践能力和创新意识的培养所起的作用已得到大家的共识。数学建模的一般步骤可分为问题的提炼、假设的提出、模型的建立、模型的求解、模型的检验和分析、模型的实施。进行数学建模的目的是通过观察、类比、归纳和分析等环节,结合数学知识和思想,构造数学模型解决所遇到的问题,其是一个分析和解决实际问题的过程,或者说,数学建模的过程是一个“做数学”的过程。该模型已经成为数学教育领域的新观点,有助于学生主动学习课本上的理论知识,主动参与到生动的思维实践活动中,实现创新,提高自身素质。

3.结束语

第5篇:数学论文范文

由于数学知识逻辑性较强,学生很难完全理解书本上列举的每一个知识点,数学知识的形成,在经历漫长而艰辛的历史洗礼后变得更丰富,数学史对培养学生数学素养起到重大作用。教师在教学过程中,让学生了解数学史是很有必要的,可以让学生清楚理解数学知识的形成过程,加强对数学知识的理解。通过数学史的引入,学生学习起来会更轻松。比如在教学立体几何时,学生对那些图形缺乏一定的空间想象,特别是逻辑性较差的同学,更会觉得空间几何学起来非常困难。为了使同学消除对空间几何的恐惧,教师可以结合有关几何的数学家或历史故事,让学生领会空间几何的奥妙,引导学生发散思维,从而敢于、乐于分析和探索空间几何。又如在讲解有理数这一内容时,学生也许会对有理数的形成过程感到疑惑,这时教师便可向学生介绍有理数在数学史上的“生平”。通过对其历史的了解,学生在以后的解题过程中会自然而然地想到学生有理数知识形成的不易,从而能更深入地思考。

二、数学史有助于学生掌握数学思维方法

数学对学生的逻辑推理能力要求较高,需要学生具有足够的思维和空间想象力。由于其特殊性,教材在编排上都是按照一定的过程进行编写,基本上每一个知识点的罗列都是先介绍其定义,然后举例证明和进行推理或反推理,最后让学生做题巩固。这种教材的安排固然有其道理,但也在一定程度上忽略了学生思考的过程。有的教师在数学课堂教学中讲解知识点时,往往按照自己的思路,一步一步地分析,在黑板上写满解题步骤,以便学生一目了然。用这种方法讲解例题,看似可以让学生能够清楚、直接地理解例题,但实际上学生会觉得这样上课丝毫没有乐趣可言,而且会认为数学知识根本不需要多加思考。这时教师就可以在课内融入数学史,目的就是告诉学生数学是如何创造出来的,数学思维是怎样一步一步产生的,这样有助于学生掌握数学思维方法。例如在渗透数形结合这一数学思想时,就让学生充分了解在数学发展史上几何的解题曾是一大难题。在经过无数数学家长期探索与不断研究下,最终发现代数可以有效帮助解决几何问题,从而形成数形结合思想。

三、利用数学史讲授知识系列

数学教学不仅要向学生传授知识,更要培养学生的数学思维能力。因此,为有效提高学生的逻辑推理能力,教师可以将数学史与思维培养结合运用,让学生自己体会数学知识的创造和数学思想形成的过程。在高中数学教学中,教师没有必要急于讲解每一个详细的知识点,而是在知识点的基础上介绍其历史,比如这个知识点是哪一位数学家提出来的,是在怎样的历史背景条件下创造的,这个知识所表达的数学思想是什么。这样的教学过程可以帮助学生整体把握这些知识的相互联系甚至整个知识体系,从而对数学有更深刻的理解。比如在一开始介绍几何时,教师可以先从几何发展史讲起,数学几何的发展是从古希腊开始的,在几何发展的过程中,其中阿基米德对圆锥曲线透彻研究为以后的解析几何贡献颇大。后来几何又经历了很多历史阶段,在历史长河中经久不衰。通过对几何数学思想创造过程的理解,学生初步掌握了几何系列知识的特点,这对他们今后的几何学习有着重大的意义。

四、利用数学史开展探究式学习

数学知识需要经过长时间的不断探究才能形成,数学是严谨的,每一个知识点都必须经得起历史的考验和实践的证明。教师在高中数学教学中,可以把数学史当做数学知识学习的载体,将数学公式或概念和数学发展史有机结合起来,重点讲授数学概念中的关键字词。由于学生的理解能力有限,很难将一整句甚至是一大段的数学概念理解清楚,于是教师便可抓住概念中的关键词语,利用相关概念在数学史的创造历程,用史实说话,让学生在学习过程中清楚、准确地认知概念所对应的一系列数学知识。通过关键字词入手,强化了学生对新概念的理解。与此同时,学生也了解到了概念中字词的选取不是随意而成的,是数学家不断研究、探索的过程。要知道,探究式学习是数学学习的重要途径,因此教师在课堂教学中要以培养学生探究能力为目标,巧妙融入相关知识的发展史,和学生共同创设适宜的教学情境,提高课堂参与度和教学效率。例如以“概率”知识为例,可以向学生今天的数学历史事件,学生发现今天没有发生那些事,那明天是不是有可能和历史重合呢?

五、结语

友情链接