公务员期刊网 精选范文 数学建模的应用实例范文

数学建模的应用实例精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模的应用实例主题范文,仅供参考,欢迎阅读并收藏。

数学建模的应用实例

第1篇:数学建模的应用实例范文

一、精拟建模问题

问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。

1.贴近学生经验

所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。

2.源自有趣题材

所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。

3.力求难易适度

所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。

二、聚焦建模方法

数学建模方法是指运用数学工具建立数学模型进而解决现实问题的方法,它是数学建模教与学的核心,具有重要的教学功能。掌握一定的数学建模方法是实现数学建模课程目标的有效途径。为此,数学建模教学应聚焦于数学建模方法。

1.注重建模步骤

数学建模方法包含诸如问题表征、简化假设、模型构建、模型求解、模型检验、模型修正、模型解释、模型应用等多个步骤。数学建模教学中,教师应通过数学建模案例,注重对各步骤的基本内涵、实施技巧及各步骤之间的内在联系和协同方式进行阐释和分析,这是使学生从整体上把握建模方法的必要手段。有助于学生掌握数学建模的基本过程,有助于为学生模仿建模提供操作性依据,进而为学生独立建模提供原则性指导。

2.突出普适方法

不同的数学建模方法,其作用大小和应用范围也不同,譬如,关系分析方法、平衡原理方法、数据分析方法、图形(表)分析方法以及类比分析方法等均为具有统摄性和普适性的建模方法。教师应侧重对这些普适性的建模方法进行教学,使学生重点理解、掌握和应用。此外,分属于几何、代数、三角、微积分、概率与统计、线性规划等数学分支领域的建模方法等,尽管其普适性程度稍逊,但其对解决具有领域特征的现实问题却具重要应用价值,因而,教师也应结合相应数学领域内容的教学,使学生通过把握其领域特性及其所运用的问题情境特征而熟练掌握并灵活应用。

3.加强方法关联

许多现实问题的解决往往需要综合运用多种数学建模方法,因此,在数学建模教学中,应加强数学建模方法之间的关联,注重多种建模方法的综合运用。为此,应在加强各建模步骤之间联系与协调运用基础上,综合贯通处于不同层次、分属不同领域的数学建模方法,在建模各步骤之间、具体的建模方法之间、不同领域的数学建模方法之间进行多维联结,建立数学建模方法网络图,以使学生掌握数学建模方法体系,形成综合运用数学建模方法解决现实问题的能力。

三、强化建模策略

数学建模策略是指在数学建模过程中理解问题、选择方法、采取步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。数学建模策略对数学建模的过程、结果与效率均具有重要作用。学生掌握有效的数学建模策略,既是数学建模课程的重要教学目标,也是学生形成数学建模能力的重要步骤。因此,应强化数学建模策略的教与学。

1.基于建模案例

策略通常具有抽象性、概括性等特点,往往需要借助实例运用获得具体经验,才能被真正领悟与有效掌握。因此,数学建模策略的教学应基于对建模案例的示范与解析,使学生在现实问题情境中感受所要习得的建模策略的具体运用。为此,一方面,针对某特定建模策略的案例应尽可能涵盖丰富的现实问题,并在相应的案例中揭示该建模策略的不同方面,以为该建模策略提供多样化的情境与经验支持;另一方面,应对某特定建模案例中所涉及的多种建模策略的运用进行多角度的审视与解析,以厘清各种建模策略之间的内在联系。基于案例把握建模策略,将抽象的建模策略与鲜活的现实问题密切联系,有助于积累建模策略的背景性经验,有助于丰富建模策略的应用模式,有助于促进建模策略的条件化与经验化,进而实现建模策略的灵活应用与广泛迁移。

2.寓于建模方法

建模策略从层次上高于建模方法,是建模方法应用的指导性方针,它通过建模方法影响建模的过程、结果与效率。离开建模方法而获得的建模策略势必停留于表面与形式,难以对数学建模发挥作用。因此,应寓于建模方法获得建模策略。为此,应通过数学建模案例,解析与阐释所用策略与方法之间的内在联系与协同规律,使学生掌握如何运用建模方法,知晓何以运用建模方法,从而获得具有“实用”价值的数学建模策略。

3.联结思维策略

思维策略是指问题解决思维活动过程中具有普适性作用的策略。譬如,解题时,先准确理解题意,而非匆忙解答;从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;在理解问题整体意义基础上判断解题的思路方向;充分利用已知条件信息;注意运用双向推理;克服思维定势,进行扩散性思维;解题后总结解题思路,举一反三等,均为问题解决中的思维策略。思维策略是数学建模不可或缺的认知工具,对数学建模具有重要指导作用。思维策略从层次上高于建模策略,它通过建模策略对建模活动产生影响。离开思维策略的指导,建模策略的作用将受到很大制约。因此,在建模策略教学中,应结合建模案例,将所用建模策略与所用思维策略相联结,以使学生充分感悟思维策略对建模策略运用的指引作用,增强建模策略运用的弹性。

四、注重图式教学

数学建模图式是指由与数学建模有关的原理、概念、关系、规则和操作程序构成的知识综合体。具有如下基本内涵:是与数学建模有关的知识组块;是已有数学建模成功案例的概括和抽象;可被当前数学建模问题情境的某些线索激活。数学建模图式在建模中具有重要作用,影响数学建模的模式识别与表征、策略搜索与选择、迁移评估与预测。因此,应注重数学建模图式的教与学,为此,数学建模教学应实施样例学习、开展变式练习、强化开放训练。

1.实施样例学习

样例学习是向学生书面呈现一批解答完好的例题(样例),学生解决问题遇到障碍或出现错误时,可以自学这些样例,再尝试去解决问题。样例学习要求从具有详细解答步骤的样例中归纳出隐含其中的抽象知识与方法来解决当前问题。在数学建模教学中实施样例学习,学习和研究别人的已建模型及建模过程中的思维模式,有助于使学生更多地关注数学建模问题的深层结构特征,更好地关注在何种情况下使用和如何使用原理、规则与算法等,从而有助于其建模图式的形成。在实施样例学习时,应注重透过建模问题的表面特征提炼和归纳其所蕴含的关系、原理、规则和类别等深层结构。

2.开展变式练习

通过样例学习而形成的建模图式往往并不稳固,且难以灵活迁移至新的情境。为此,应在样例学习基础上开展变式练习,通过多种变式情境的分析和比较,排除具体问题情境中非本质性的细节,逐步从表层向深层概括规则和建构模式,不断地将初步形成的建模图式和提炼过的规则和模式内化,以形成清晰而稳固的建模图式。开展变式练习时,应注重洞察构成现实情境问题的“数学结构框架”,从“变化”的外在特征中鉴别和抽象出“不变”的内在结构。

3.强化开放训练

数学建模具有结构不良问题解决的特性。譬如,条件和目标不明确;“简化”假设时需要高度灵活的技巧;模型构建需要基于对问题的深邃洞察与合理判断并灵活运用建模方法;所建模型及其形式表达缺乏统一标准,需要检验、修正并不断推广以适应更复杂的情境;有并非唯一正确的多种结果和答案等等。鉴于此,数学建模教学中应强化开放训练,以促进学生形成概括性强、迁移范围广、丰富多样的建模图式。为此,应通过改变问题的情境、条件、要求及方法来拓展问题。即对简化假设、建模思路、建模结果、模型应用等建模环节进行多种可能性分析;将问题原型恰当地转变到某一特定模型;将一个领域内的模型灵活地转移到另一领域;将一个具体、形象的模型创造性地转换成综合、抽象的模型。在上述操作基础上,对建模问题进行抽象、概括和归类,从一种问题情境进行辐射,并以此网罗建模的不同操作模式,从而使学生形成关于建模图式的体系化认知,进而提升建模图式的灵活性和可迁移性。

五、活化教学方式

鉴于数学建模具有综合性、实践性和活动性特征,因而其教学应体现以学生为认知主体,以运用数学知识与方法解决现实问题为运行主线,以培养学生数学建模能力为核心目标。为此,应灵活采取激励独立探究、引导对比反思、寻求优化选择等密切协同的教学方式。

1.激励独立探究

数学建模教学中,教师应首先激发学生独立思考、自主探索,力求学生找到各自富有个性的建模思路与方案。诚然,教师和教材的思路与方案可能更为简约而成熟,然而,学生是学习的主体,其获得的思路与方案更贴近学生自身的认知水平。因此,教师应给予学生独立思考的机会,激励学生个体自主探索,尊重学生的个性化思考,允许不同的学生从不同的角度认识问题,以不同的方式表征问题,用不同的方法探索问题,并尽力找到自己的建模思路与方案,以培养学生独立思考的习惯和探究能力。

2.引导对比分析

在激励学生探寻个性化的建模思路与方案基础上,教师应及时引导学生对比分析,归纳出多样化的建模思路与方案。为此,应将提出不同建模方案的学生组成“异质”的讨论小组,聆听其他同学的分析与解释,对比分析探索过程、评价探索结果、分享探索成果,以使学生认识从不同角度与层次获得的多样化方案。引导学生对比分析,既展现了学生自主探索的成果,又发挥了教师组织引导的职能,还使学生获得了多元化的数学建模思维方式。

3.寻求优化选择

在获得多样化的建模方案基础上,教师应继续引导全班学生对多样化的建模方案进行观察与辨析,使学生在思维的交流与碰撞中,感受与认知其它方案的优点和局限,反思与改进自己的方案,相互纠正、补充与完善,寻求方案的优化选择。引导学生寻求优化选择,不仅仅是求得最优化的结果,还是发展学生数学思维、培养学生创新意识的有效方式。在此过程中,教师应与学生有效互动,深度交流,汲取不同方案的可取之点与合理之处,以做出优化选择。

上述数学建模教学策略之间存在密切联系。精拟建模问题是有效实施数学建模教学的载体;聚焦建模方法是有效实施数学建模教学的核心;强化建模策略是有效实施数学建模教学的灵魂;注重图式教学是有效实施数学建模教学的依据;活化教学方式是有效实施数学建模教学的保障。在数学建模教学中,诸策略应有机结合,协同运用,以求取得最佳效果。

参考文献

[1] Werner Blum Peter L.Galbraith Hans-Wolfgang Henn.Mogens Niss.Modeling and Applications in Mathema-tics Education.New ICMI Study Series VOL.10.Published under the auspices of the International Com-mission on Mathematical Instruction under the general editorship of Michele Artigue,President Bernard,R.Hodgson,Secretary General. 2006.

[2] 中华人民共和国教育部.普通高中数学课程标准.北京师范大学出版社,2003.

[3] 李明振,喻平.高中数学建模课程实施的背景、问题与策略.数学通报,2008,47(11).

[4] 李明振.数学建模认知研究.南京:江苏教育出版社,2013.

[5] Mingzhen Li,Qinhua Fang,Zhong Cai, Xinbing Wang.A Study ofInfluential Factors in MathematicalMod-eling of Academic Achievement of High School Students.Journal of Mathematics Education.Vol4 No.1.June,2011.

[6] Mingzhen,,Hu Yuting,Li,Yu Ping,Zhong Cai.A Comparative Study on High School Students’ Mathematical Modeling Cognitive Features.Research in Mathematical Education. June,2012.

第2篇:数学建模的应用实例范文

关键词:数学建模;高等数学;创新思想;教学手段;实践效果

引言

柏拉图说过:“数学是一切知识中的最高形式。”由此可见学好数学的重要性。高等数学是大学一年级的一门重要基础必修课,教学基本目标是让学生掌握高等数学中的基本定义、基本定理及应用定义、定理计算相关习题,为学好其专业课打下扎实的数学基础。但是高等数学课程的特点是抽象性和逻辑性都比较强,大部分的知识点学生理解起来比较吃力,上下两册书的难度呈递增趋势,即由一元函数的微积分学到多元函数的微积分学。随着课程的持续讲解,学生学习的兴趣会降低。如何在高等数学的教学中添加“活跃”因子,使高等数学的教学变得丰富多彩,是高等数学教学改革的重点。在充分考虑学生实际情况的基础上培养学生的应用技术能力,是适应新形势下高等数学教学改革的关键。

数学建模是从实际问题出发,首先作出基本假设、分析内在规律等前期工作;然后需要运用数学符号和语言得到目標函数,即数学模型;最后用计算机仿真方法计算出所需结果用来解释实际问题并且能够接受实际的检验。数学建模是理论与实际联系的一个重要桥梁,在教学中合理地加入数学建模解决实际问题的引例,彻底改变只是利用既定的公式和定理进行解题的形式,让学生真实地感受高等数学中公式和定理的用处,既能激发学生学习的兴趣,又能提高学生数学的实际应用能力。

把数学建模思想适当地融入到高等数学的教学中来,是提高教学效果的有效方法,也是教学改革的有效途径。通过在教学中添加数学建模这个“活跃”因子,不仅使得课堂的整体气氛变得活跃、生动。而且可以达到提高学生学习兴趣和综合能力的目的,拓展学生知识的广度,展示高等数学理论知识的实用性和应用性。

一、课上融入数学建模思想的教学手段与方法

(一)教学中融入数学建模思想的方法与作用

传统的教学模式,几乎都是老师一言堂式的教学模式。这种教学模式缺少老师与学生之间合理的互动,课堂逐渐变得枯燥无味,学生自然提不起学习的热情,久而久之教学效果会越来越不理想。并且这种模式很难跟上素质教育的脚步,很难为培养应用技术型本科人才做好数学基础。所以为了适应培养应用技术型本科人才的需要,高等数学课程的教学应打破传统的模式,适应时代的脚步。

在教学中适当地融入数学建模思想是打破传统教学模式的一种的有效方法。针对于不同专业的学生,适当地调整数学建模引入的实例,做到因材施教。比如,针对经济类专业的学生,教学中应多涉及与经济有关的数学建模实例;针对计算机类专业的学生,教学中应多涉及一些应用计算机软件编程的数学建模实例,使得学生在学习高等数学的同时还可以接触到Matlab,mathmatics,lingo等计算机软件方面的知识。这种教学方法,不仅可以提高学生的学习兴趣,促进学生学习高等数学基础知识的自觉性和主动性,而且对学生学习好本专业的后续课程有很好的帮助。

在高等数学教材中有许多知识点的教学可以用于融入数学建模思想,比如函数的极值及最值、导数的概念、微分方程、函数的极限等等。总体来说,无论是在几何上还是物理上的应用实例,都可以看成是一个简单的数学建模问题。通过不同的实例在教学中反复讲解数学建模的过程,不仅使学生对应用高等数学的知识来解决实际问题有了一定的了解,而且还使学生对数学建模有了初步的认识,培养学生将实际问题数学化的能力。

(二)高等数学教材中的数学建模案例分析

下面用教学中的一个具体例题谈谈在教学中数学建模思想的融入,在高等数学教材的下册第九章第八节多元函数的极值及其求法中的例6:有一宽为24cm的长方形铁板,把它两边折起来做成一断面为等腰梯形的水槽,怎样折法才能使断面的面积最大?求解此题时,首先设折起来的边长为xcm,倾角为α,则梯形断面的下底长为(24-2x)cm,上底长为(24-2x+2xcosα)cm,高为(xsinα)cm,这就是数学建模中的建立变量的过程;

断面面积,A=24xsinα-2x2sinα+x2sinαcosα这就是数学建模中的建立目标函数的过程;0<α≤π/2,0<α≤π/2这就是数学建模中的约束条件;下面求这个函数取得最大值的点Ax=24sinα-4xsinα+2xsinαcosα=0,Aα=24xcosα-2x2cosα+x2(cos2α-sin2α)=0..令Ax=24sinα-4xsinα+2xsinαcosα=0,Aα=24xcosα-2x2cosα+x2(cos2α-sin2α)=0.

解方程组,得α=60°,x=8这就是数学建模中的具体模型的求解过程;

根据题意可知断面面积的最大值一定存在,通过计算得知α=π/2时的函数值α=π/3,

x=8点的函数值小,又函数在D内只有一个驻点,因此可以断定,当α=60°,x=8时,就能使断面的面积最大。这就是数学建模中的对模型的分析与检验,找出模型的最优解;在课上讲解这道例题时,就可以以此为例拓展讲解关于数学建模的全过程,第一步模型的准备;第二步模型的假设;第三步模型的构成;第四步模型的求解;第五步模型的分析检验;第六步模型的应用,使学生初步了解数学建模的过程。

二、课下数学建模的组织与培训

有了课上融入数学建模思想作为前提,在课下时间选取部分学生对数学建模方面的知识进行培训与学习,每周固定时间进行数学建模的研讨课,然后学生自主分组,以团队形式进行小范围内的数学建模比赛。

第一阶段:老师具体讲解数学建模所用的基本方法,如层次分析法、模糊线性规划法、图论法插值拟合法等等。并针对每一种数学建模基本方法讲解一个具体的数学建模实例,让学生充分了解各种建模基本方法的应用;培训學习计算机软件能力,如Matlab、mathmatics等数学建模常用软件。使得学生可以有能力应用这些软件来解决数学建模中遇到的问题。

第二阶段:通过一段时间的具体培训,学生对自己在数学建模中的优势和劣势有了一定的了解。有些学生擅长计算机操作,有些学生擅长模型的建立与求解,有些学生则擅长撰写论文。通过一段时间研讨课的接触,学生们对彼此的优势相对比较了解,他们以三人为一团队的形式自主分组,尽量做到在团队中充分发挥自己的长处,并且可以互相配合完成整个数学建模的任务。由老师布置数学建模作业,小组内研究讨论并在规定时间内上交已完成的作业资料。学生通过自己查找相关资料解决问题有助于提高他们学习的主动性,将增强学生应用理论知识的能力,激发学生学习数学的兴趣。老师根据作业的具体情况查缺补漏,对大部分小组比较薄弱的数学建模知识再进行深入讲解与讨论。

第三阶段:开展小范围的数学建模比赛,有了第二阶段的上交数学建模作业作为基础,老师布置数学建模比赛题目,在选择题目时要做到循序渐进。通过比赛的开展,不仅使学生对所学的数学知识有了更加深刻的理解,计算机应用能力得到一定的提高,还培养了学生的协作精神。为举办关于数学方面的创新能力竞赛准备好后备力量,为参加全国大学生数学建模竞赛选拔优秀团队做好基础。

三、数学建模创新能力的实践效果

有了课上融入数学建模思想和课下数学建模的组织与培训作为前提,数学建模的实践效果可以说是水到渠成。近些年来一直持续举办关于数学方面的创新能力竞赛,如数学综合能力竞赛、大学生数学建模竞赛等。在学校及学院领导的大力支持下竞赛开展得十分顺利,在参赛学生及指导教师的不断努力和拼搏下,取得了优异的成绩,获奖范围从国家二等奖到省一、二、三等奖并不断创造着新的纪录。充分说明了培养学生数学建模创新能力的实效性。

下面用一个具体例题谈谈培养数学建模能力的实效性,在高等数学教材的上册第七章第五节中的例4:设有一均匀、柔软的绳索,两端固定,绳索仅受重力的作用而下垂,试问绳索在平衡状态时是怎样的曲线?这道题的求解方法是通过模型的假设,建立微分方程模型,应用高等数学中可降解微分方程的求解方法,就可以求解出此微分方程的特解,即曲线方程。这曲线叫做悬链线。这道题也是教材中一道典型的数学建模题,在课上的教学中会给学生拓展讲解数学建模中的微分方程模型。

2016年的全国大学生数学建模竞赛中的A题系泊系统的设计问题中,就应用到了这道例题中的悬链线方程,可见在高等数学课堂上加入数学建模思想的重要性。高等数学与数学建模相结合可起到相辅相成的作用。学生通过课上学习数学建模思想、课下参与数学建模研讨课、参加小范围内数学建模比赛和全校数学建模比赛等数学能力方面的竞赛,锻炼自己的数学创新能力。有了这些作为基础,才取得了全国大学生数学建模比赛的优异成绩。由此可见,数学建模创新能力的实践效果显著。在整个过程中全面训练学生的综合素质。

四、结语

本文在培养应用型本科人才的新形势下,针对学生的实际情况,提出了课上融入数学建模思想的教学方法和课下组织与培训数学建模的改革方案并加以实施。通过数学建模创新能力的实践效果可以明显看出,整个实施方案的效果显著。这需要求老师在具体的实施过程中做到不断地探索,时常总结具体实践中的宝贵经验,为更好地培养大学生的应用创新能力而努力。

参考文献: 

[1] 王涛,佟绍成.高等数学精品课程建设的研究与实践[J].黑龙江教育:高教研究与评估,2007(10):44-46. 

[2] 同济大学应用数学系.高等数学(第七版)(上下册)[M].北京:高等教育出版社,2014. 

[3] 杨四香.浅析高等数学教学中数学建模思想的渗透[J]. 长春教育学院学报,2014(3):44-46. 

[4] 丁素珍,王涛,佟绍成.高等数学课程教学中融入数学建模思想的研究与实践[J].辽宁工业大学学报,2008,10(1):133-135. 

第3篇:数学建模的应用实例范文

关键词: 数学建模;高职数学;数学教学;渗透

在高职教学中,数学是一门必不可少的公共基础课。高职教育的培养目标是为生产、服务和管理一线培养高素质、高技能的应用型人才,这就决定了高职院校人才培养必然具有实践性、主动性与个性化等特点。高职人才培养的总体目标使得高职数学教学改革正在向以培养学生的数学素养为目标的能力教育进行转变。高职数学教学应以“必需、够用为度”,将培养学生的创新意识和实践能力作为主要突破口。数学建模越来越受重视,如,分析与设计、预报与决策等领域已经融入了数学建模思想。在高等数学的教学过程中渗透数学建模思想.可以提高学生的各种能力,促进相关课程的学习,有助于高职高专教育培养日标的实现。

1.高职数学教学中渗入数学建模思想的意义

简单地说,把日常生活和工程实践中的实际问题转化成数学问题的过程就是数学建模。培养学生创新能力就是培养学生运用数学思想方法、数学知识、及计算机技术去解决各种实际问题的能力。它需要进行合理的抽象和量化,建立数学模型然后用公式模拟和验证。培养和训练学生的数学建模能力不仅能培养学生的探索精神和创新意识,而且能更深刻地激发学生的直觉思维和形象思维,使学生对实际问题的感受和领悟更加细致、敏锐,从而进一步增强学生的应用能力和创新能力。 因此,有必要在高职数学教学中渗入数学建模思想。

2.高职数学教学中渗入数学建模思想的途径

2.1 调整教学内容,渗透数学建模思想

高职数学的课程设置和教学内容长期以来重基础理论、轻实践应用。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的离散的数值计算等内容,因此,我们必须要调整课程教学内容,要把数学建模渗透到课堂教学中。

例如,在讲解二项分布时,可以引入由英国生物统计学家Calton设计的钉板模型,让学生观察计算模拟后该模型的图形表示,通过归纳对比,5000次投球小球堆积的概率图与二项分布的理论图形极其相似,这样,既能让学生了解二项分布的来源,又让学生感悟到怎样用实际模型去检验理论模型,同时使学生加深对“频率近似于概率”这一原理的理解,了解计算机模拟方法;在高等数学课程的教学中,在讲导数的概念时,给出两个模型,变速直线运动的瞬时速度模型,曲线上某一点处的切线斜率模型。为了求解这两个模型,我们抛开它们的实际意义,抽象出它们共同的本质属性,可归结为同一个数学模型,即函数的改变量与自变量改变量的比值的极限值(当自变量的改变量趋近于零时),把这个极限定义为函数的导数。再如,线性代数中课程对于行列式的定义,就可以通过介绍著名诺贝尔经济学家列昂杰夫(Leontiet)考虑的一个货物交换的经济模型,将其归结为一个三元一次方程组的求解问题来引入,这样就能从实用的角度让学生去了解一些知识的背景。这不仅能加深学生对概念、公式、定理的理解,增强用数学知识解决实际问题的能力,也调动了学生的学习好奇心和学习积极性。

2.2 在教学中精选合适的案例,渗透数学建模思想

在课堂教学中使用案例教学法,教师以具体的案例作为主要的教学内容,通过具体问题的建模示例,介绍数学建模的思想方法。例如,在讲授闭区间上连续函数的零点存在定理时,列举常见的一些常零点定理应用例子之后,提出如下问题:一把四脚等长的矩形椅子在不平的地面上如何才能放平?学生对这个在日常生活中司空见惯的实例,首先感到很熟悉,带有亲切感。问题看似简单,但谁也无法将它马上和今天所学的数学知识联系起来。于是兴趣一下子被调动起来,然后,教师开始用实际的椅子做起试验来,结果只需将椅子绕它的平面中心旋转一定的角度,椅子便神奇般的放稳了。在教师的引导下,学生通过数学建模的手段转化为一个简单的数学问题,从而被当堂所讲的知识轻而易举地解决了。再比如,微分方程一章除了介绍课本中物理、几何等方面的应用题外还可以引入(马尔萨斯(Malthus)模型)英国人口统计学家马尔萨斯l789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r,在此假设下,推导并求解人口随时间变化的数学模型。这样可以使学生在较简单的实际问题中提炼微分方程,并且求解。模型案例不但可以活跃课堂气氛,提高学生的课堂学习兴趣和积极性,而且使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的。

2.3 在习题教学中渗透数学建模思想

习题教学是培养学生应用能力的重要环节,在教完各章节内容后,根据选取一些适合学生讨论、练习的简单综合实例,让学生自己发现问题,并用所学的数学知识解决它.例如:导数的应用可布置运用导数、极值和最值的有关知识为生活和专业中一些简单的资源管理、最大利润、造价最低、征税问题等实际问题作出最优决策;在微分方程这一章,可以引入2004年全国大学生数学建模竞赛c题饮酒驾车问题,求解一阶线性微分方程等。这样就可以通过习题渗透数学建模思想,既使学生掌握了数学建模的方法,又使学生巩固了所学的知识,大大提高了学生数学实践能力。

数学教师要转变教学观念,积极参与教学改革。培养学生的数学建模能力是高职高等数学课程教学改革的一个方向。把数学建模渗透到高职教学中,不断的寻找、创新更多合适的建模案例,在讲授数学知识的同时,把数学教学和数学建模有机地结合起来,要把培养学生具有应用数学方法解决实际问题的意识和能力放在首位。在高职高等数学教学中渗透数学建模思想,既能培养学生的数学素质和创新能力,也能改变传统教学中知识与能力脱节的弊端,有利于高职教育目标的实现。

参考文献:

[1]宫华,陈大亨.高职教改中的数学建模教育的发展[J].职业教育研究,2006(2),62.

第4篇:数学建模的应用实例范文

关键词:线性代数;数学建模思想;教学;案例

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)21-0146-03

引言

当前,高考第五批和中专对口升学学生成为高职院校的主要生源,高等数学在高职院校不仅是工科学生公共必修课,同时也为经济类的专业基础课,对学生学习后续专业课程非常重要。但学生数学基础相对薄弱,对学习不感兴趣,自制力差。而学生对线性代数抽象的概念定理及其冗繁的计算难以接受成为线性代数教学的突出表现,因此,在线性代数教学中融入数学建模思想方法是解决学生理解困难和实现教学目标的有效途径。

一、高职院校线性代数教学情况与建模发展概况

1.线性代数教学情况。行列式、矩阵和线性方程组是目前高职院校线性代数部分教学的主要内容,所用的教材是以理论计算为主体,教学偏重其基本定义和定理,过分强调理论学习,忽视其方法和应用,有关线性代数应用实例几乎不涉及。再者高职院校高等数学总体课时少,因此线性代数部分课时也非常有限,但其理论抽象,内容较多,教师在课堂上大多采用填鸭式的教学方式,导致该课程与实际应用严重脱离,造成了学生感觉线性代数知识枯燥,计算繁杂,学习它无用处,大大降低了学生的学习热情。

2.数学建模及其发展概况。数学建模的基本思想是利用数学知识解决实际问题,是对问题进行调查、观察和分析,提出假设,经过抽象简化,建立反映实际问题的数量关系;并利用数学知识和Matlab、Lingo、Mathematics等数学软件求解所得到的模型;再用所得结论解释实际问题,结合实际信息来检验结果,最后根据验证情况来对模型进行改进和应用[1],它使学数学与用数学得到统一。

数学建模大专组竞赛开展已有15年,参赛的高职院校逐年增加,我院在多年的参赛中取得了一定的成果,但因数学建模难度大和学生数学基础薄弱以及高职院校学制的原因,参加数学建模培训的学生基本为大一新生,而且只有小部分,明显受益面小。

二、数学建模思想融人线性代数教学中的具体实施

线性代数因其理论抽象,逻辑严密,计算繁琐,让人对其现实意义感受不到,使高职学生学习起来有困难,也就很难激发学生的学习兴趣,因此,线性代数教学过程中就要求教师介绍应用案例应体现科学性、通俗性和实用性。

1.数学建模思想融入线性代数理论教学中。线性代数中的行列式、矩阵、矩阵乘法、线性方程组等复杂抽象的概念都可以通过实际问题经过抽象和概括得到,故而可以恰当选取一些生动的实例来吸引学生的注意力,通过对实际背景问题的提出、分析、归纳和总结过程的引入线性代数定义,同时自然地建立起概念模型,让学生切实体会把实际问题转化为数学的过程,逐步培养学生的数学建模思想。比如讲授行列式定义之前,可以引入一个货物交换模型,并介绍模型是由诺贝尔经济学奖获得者列昂杰夫(Leontief)提出,让学生拓展视野。引导学生分析问题,建立一个三元线性方程组来求解该问题,再以此问题引出行列式,使学生了解行列式应用背景是为求解线性方程组而定义的。从简单的经济问题入手,让学生了解知识的应用背景,使学生感受到学习行列式是为生产实践服务的,提高学生学习的积极性[2],明确学生学习的目的性。

2.数学建模思想融入线性代数案例教学中。选择简单的实际案例作为线性代数例题,给学生讲授理论知识的同时引导学生对问题进行分析,对案例进行适当简化并做出合理假设,再建立数学模型并求解,进而用结果解释实际案例,学生通过这样的学习过程容易理解掌握理论知识,同时也体会了数学建模的基本思想,更让学生认识到线性代数的实用价值,而且有利于提高学生分析问题和解决问题的能力[3]。对于不同的专业,可以根据专业需要引入相应的数学模型,但专业性不能太强,由于大一学生还暂时没有学,因课时限制,在线性代数课堂教学中应该采用简单的例子。比如经管类专业的学生学习矩阵和线性方程组的相关例题时,可以分别选择简单的投入产出问题和互付工资问题的数学模型;而电子通信类专业的学生学习矩阵和线性方程组的相关例题时,可以加入简单的电路设计问题和电路网络问题的数学模型。

3.数学建模思想融入线性代数课后练习中。高职院校线性代数教学内容侧重于理论,课后习题的配置大多数只是为学生巩固基础知识和运算技巧的,对线性代数的定义、定理的实际应用问题基本没有涉及,学生的实际应用训练不够,因此适当地补充一些简单的线性代数建模习题,让学生通过对所学的知识与数学建模思想方法相结合来解决。我们从两个方面具体实施:(1)在线性代数课程中加入Matlab数学实验,利用2个学时介绍与行列式、矩阵、线性方程组等内容相关的Matlab软件的基础知识,再安排2个学时让学生上机练习并提交一份应用Matlab计算行列式、矩阵和线性方程组相关内容的实验报告。(2)针对所学的内容,开展1次数学建模习题活动,要求学生3人一组利用课余时间合作完成建模作业,作业以小论文形式提交,提交之后,教师让每组选一个代表简单介绍完成作业的思路和遇到的问题,其余队员可作补充,再针对文章的不同做出相应的点评并指出改进的方向。通过这种学习模式,不但提高学生自学和语言表达以及论文写作能力,而且利于培养学生团队合作和促进师生关系,教学效果也得以提升。

4.数学建模思想的案例融入线性代数教学中。

案例1:矩阵的乘积。

现有甲、乙、丙三个商家某厂家的A、B、C、D四款产品。四款产品的每箱单价和重量分别为A:20元,16千克;B:50元,20千克;C:30元,16千克;D:25元,12千克。甲商的产品与数量分别为A:20箱,B:5箱,D:8箱。乙商的产品与数量分别为B:12箱,C:16箱,D:10箱。丙商的产品与数量分别为A:10箱,B:30箱。求解三家商产品总价和总重量。

模型假设:①在没任何促销优惠措施下严格按照单价和数量计算总价;②同款产品对即使不同级别的三家商执行同样的单价。

模型建立:由已知数据分析可知,发往各商的产品类别不尽相同,通过用0代替,可以列成表。由此,分别将产品的单价和单位重量,各商的各款产品数量以及产品总价和总重量用表1、表2、表3来表示:

模型求解:用三个矩阵表示以上三个表格,

A=20 50 30 2516 20 16 12,B=20 0 10 5 12 30 0 16 0 8 10 0,

矩阵C的元素c是矩阵A的第一行元素与矩阵B的第一列对应的元素乘积之和,即

同理有

于是得

C=850 1300 1700516 616 760。

模型分析:对以上算法进行抽象可得到两个矩阵相乘的定义,设A为m×s矩阵,B为s×n矩阵,即A=(a)m×s,B=(b)s×n A与B的乘积是一个m行n列矩阵C=(c)m×n,记为C=AB。矩阵C的元素c是用矩阵A第i行元素与矩阵B第j列对应元素乘积之和求得[4]。

案例2:互付工资问题。

木工、电工、油漆工准备相互装修他们的房子,他们有如下协议:(。┟咳宋另外两人和自己工作的时间为10天,()按照一般市场价,每人每天工资范围是60~80元,(#┟咳嗣刻斓墓ぷ视κ沟钠渥苁杖氲扔谧苤С觥9ぷ髑榭鋈绫4。

计算每人每天的工资。

模型假设:①每人每天工作情况正常,不能偷懒;②每人每天工作时间长度相同,不加班。

模型建立:设木工每天的工资x元,电工y元,油漆工z元,可得

2x+y+6z=10x4x+5y+z=10y4x+4y+3z=10z,即-8x+y+6z=04x-5y+z=04x+4y-7z=0 (1)

模型求解:执行Matlab命令求得方程组(1)通解为x=k(31/36,8/9,1)。根据每人每天工资范围是60~80元得≤k≤80,取k=72,则木工62元,电工64元,油漆工每天工资72元[5]。

通过以上两个简单直观的案例可以让学生了解学习矩阵、线性方程组是与实际应用密切相关,充分体会它们在解决实际问题中的用途,像这样融入数学建模思想的案例在线性代数中很多,适当的引入类似的案例不但让学生对知识易于接受,对理论也方便深入学习,而且增强学生学习主动性和数学的应用意识。

三、改革的初步成效

数学建模思想方法与线性代数的教学适当结合并灵活运用,这一教学改革提高了学生们的能力和素质,主要表现在以下几个方面:(1)熟练掌握Matlab等数学软件的使用,利用数学软件加深了数学理论知识的理解和应用;(2)学生学习积极性明显提高,启发学生初步产生用数学解决实际问题的意识;(3)学生已逐步形成一种建模思维,逐步形成良好的分析和处理问题的习惯。另外,适时应用数学建模思想教学,促进了线性代数教学方法的改进,提高教学水平和教学效果,利于高职高等数学的教学改革进一步推进和课程建设的长效发展。

总之,在高职院校高等数学各个教学模块中逐渐地融入数学建模思想方法,能使学生的数学素养有较大提高,并对教师教学理念的转变起到促进作用。

参考文献:

[1]许小芳.数学建模思想融入线性代数教学的探索[J].湖北理工学院学报,2013,10(5).

[2]韦程东,周桂升,薛婷婷.在高等代数中融入数学建模思想的探索与实践[J].高教论坛,2008,8(4).

[3]岳晓鹏,孟晓然.在线性代数教学改革中融人数学建模思想的研究[J].高师理科学刊,2011,7(4).

[4]张小向.线性代数课程教学中怎样体现数学建模思想[J/OL].(2009-11-04).

第5篇:数学建模的应用实例范文

一、数学知识对建模思想的渗透。从本质上来说,数学知识本身,就是建模的结果。因为,数学本身就是来自于现实生活,数学理论本身就是服务于社会实践的,离开了实际背景,数学不会孤立存在的。例如,算筹起源于原始人的狩猎需求,几何起源于对现实生活的直观描述(长度、面积、容积等)。但是,实际上,我们在接触数学知识的时候,往往忽略了它本身的实际意义,单纯的去认知,从而养成了数学是抽象概念的思维模式。为此,在数学课程方面,我们应该努力做到以下几点:

1.牢固树立数学来自于生活,反过来又服务于生活的基本理念。例如,刘辉的割圆术渗透着极限思想,不规则图形中隐含着规则图形,导数可以看做是极限思想的巧妙运用,定积分可以认为是无穷小求和最直接的体现,函数就是变量之间的彼此依存关系,函数表达式就是这种关系的数学模型,而线性代数是线性变量的求解平台,概率论又是预测学的基础模块。

2.建立数学知识点与现实生活及时对接的思维模式。数学学习中,对基本概念,基本定理和基本公式,尽量的对接它们在现实生活中的应用。例如,一次函数与直线,二次函数与抛物曲线,双曲线与发电厂冷却塔的侧面线,椭圆跟天体运动的轨道线,极限跟无限分割,导数跟光滑曲线,等等。

3.抽象概念的应用节点。越是呈现抽象的概念,越要善于寻找它的应用点,尽可能的找到对应实例,使得抽象概念尽可能的具体化。先让我们看下图:

图中不难看出,核心概念邻接着其它概念,然后就是概念的拓展效應。如定积分的概念本身,就含有若干邻接概念:连续,分割,和式,极限等等。给定积分概念做出具体描述,就是概念本身在几何上对接着不规则图形的面积、长度、体积等的计算。在物理学上,往往对接着从加速度到速度,再从速度到距离之间的反求关系。

4.数学模型化思维模式的转变。对待新的数学概念,我们要树立数学模型化思维模式。如,一元变量方程可以视为一元数学模型,二元方程可以视为二元数学模型,多元方程可以视为多元数学模型。许多函数表达式可以看做是特定意义下的目标函数模型,变量对应的约束不等式可以视为约束条件模型,等等。只要我们建立了这种思想就很容易建立数学概念与数学模型的联系。

二、数学建模对数学学科的正向促进。从数学建模的基本规律上来看,它自身是来自于现实生活中急需解决而又不容易解决的问题的实际应用。数学建模自身难度是不小的,除了对数学知识本身有一定要求以外,更多的是依赖思维灵感,或者是解决问题的突发奇想。这就决定了建模本身对数学学科具备了良好的正面带动和促进作用。让我们从一下几方面进行分析。

1.数学建模需要比较扎实的基本功和基本技能。例如,除了数学概念本身的熟练程度以外,还需要具备有关数学应用软件的使用基本技能。例如,matlab,lingo,excel,数据库,spss数据处理软件的使用,等等。当然,数学基本知识点的要求并没有很高,基本够用即可。但是,反过来,如果数学基本知识点不全面,需要时想不到也不会用,会影响建模的完成。

2.数学建模需要具备突发灵感。所谓突发灵感,就是在实际问题应用中,能快速的把实际问题和它所蕴含的数学知识点相对接。在对接中找到模型函数表达式和约束条件,使两者尽可能的相互贴近,不断优化。例如,在建模给出的实际问题中,我们通常要首先分析变量性质,根据变量性质,给出变量所满足的约束条件和目标函数。在某些灵感的引导下不断的优化,不断的模拟,最终获得比较理想的结果。

3.数学建模需要双向思维模式。所谓双向思维模式,就是从实际问题到数学模型,再从数学模型到实际问题,能实现快速转换。有些时候我们的思维模式,往往是单向的,不可逆的,这正是我们传统思维模式的弊端所在。例如,演绎推理和归纳推理的不同模式,很多人会不适应。尽管如此,这种双向模式的效用是革命性的,它会较大的拓展我们的思维空间。

第6篇:数学建模的应用实例范文

关键词:数学建模定位实施

随着高中新课标对数学建模在高中课程设置中的要求的逐渐加强,如何更好地在高中实施数学建模成为很多一线老师面临的问题,部分老师积极地展开探索,对数学建模的教学原则,教学方式,数学建模活动的方式和模式等进行了探讨,但是大多数一线教师对培养学生的数学建模的重视不够,认为高中课本中适合与数学建模结合的内容现成的不多,缺少教材,而数学建模的问题常常是未经数学抽象和转化的非数学领域的问题,教师的背景知识储备不足,所以,有部分老师就照搬别人的案例,忽视自己学生的实际情况,数学建模的教学效果不佳。尤其是对于大多数的学生来说,他们的数学基础一般,怎么培养他们的数学建模意识和能力,更值得我们探讨。“高中数学建模”绝不是在“数学建模”前面加上“高中”二字,它与高中数学知识、高中生、高中数学教师、教学等有着密切的关系。准确地给高中数学建模教学定位,有利于指导数学教学以及更好地开展高中数学建模话动,而不至于陷入盲目及极端地处理数学应用。

1高中数学建模的特点分析

1.1问题具有一定的创新性

高中数学建模好与劣的一个重要标准是问题选取的好与劣,或者说问题的选取是否具有创新之处。比如,问题的选取有较好的生产、生活背景,所得出的结论具有一定的应用参考价值或者具有一定的延拓性等。学生的生活环境不同,家庭背景不同,与社会的接触面不同,知识水平和对问题的洞察力也存在着很大的差异。只要学生特别感兴趣,即使是别人做过的题目,也可以让学生在了解别人工作的基础上继续做下去。高中数学建模解决的问题应该是学生身边的实际问题,所涉及的背景应该是学生所了解的,贴近学生的生活和学习。问题的选择应该避免涉及学生比较陌生的领域,或者学生平时无法接触的领域。

1.2问题解决用的主要是高中阶段的数学知识

高中数学建模是学生用所学过的数学知识来解决身边发生的各种事情,增强应用数学解决问题的意识和能力,但是,由于高中阶段所学习的知识的局限性与高中学生的认知水平等原因,决定了高中数学建模所涉及的实际背景不能太复杂,所用到的主要是高中阶段的数学知识。这些知识包括函数与数列、方程与不等式、线性规划、立体几何和解析几何、三角函数、线性方程组等比较初等的数学知识。但是,高中数学建模所用到的数学知识也不会呆板地局限在高中阶段。应该注意的是,高中数学建模所涉及的知识必须以高中阶段所学习的数学知识为主,不鼓励学生大量学习所谓的高等数学知识。

1.3“过程比结果更重要”

由于高中数学建模的目的是“为学生提供自主学习的空间,使学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;激发学生学习数学的兴趣,发展学生的创新意识和实践能力”,因此,高中数学建模重在“建”,强调学生的参与和经历,强调使学生经历较为完整的数学建模。可以说,如果学生没有经历一个较为完整的数学建模过程,就不能算参加了数学建模活动。

2高中数学建模教学的三个层次

根据学生数学建模水平的不同,和教学目标的不同,在不同的阶段教学内容也有所不同。

2.1简单建模

这一阶段的目的是使同学们认识数学建模,会用简单的建模法解决简单的问题。故其主要内容包括:数学建模的含义;简单的建模法;相关的数学知识。学生们大部分是初次接触数学建模,问题不宜过于隐蔽,也不宜过于繁琐,最好是稍加分析就可以找到问题的数学背景,然后就能解决的问题。此时可以选择一些比较简单的问题,直接用数学知识就能解决,例如:函数、数列、线性规划、不等式、统计等内容中就可以根据应用题改编来进行简单建模的教学。

2.2典型案例建模

这一阶段的主要内容就是典型案例的建模方法和完整的建模程序。这时的问题需要比第一阶段更有深度,但是综合性不宜过强。这就是打基础的阶段,只有先把典型案例建模理解并掌握了,才能进行下一步的综合建模。如果现在就用综合性很强的案例,会使学生感觉接受很困难,从而影响学生学习数学建模的积极性,也不利于下一步综合建模活动的进行。此时的案例可以来源于大学数学建模中的初等模型,或者中学生数学建模竞赛,例如:四足动物身长与体重关系模型、建筑物的震动研究模型、新产品销售模型、土地承包问题、均衡价格与市场稳定模型、不允许缺货的存储问题、代表名额分配问题等。

2.3综合建模

第7篇:数学建模的应用实例范文

数学建模是大学数学课程与现实问题的桥梁,本文初步探讨了如何在高等数学课程的教学中,较好地融入数学建模思想的具体方法,培养学生的创新与应用能力。

【关键词】

高等数学;数学建模;教学改革;教学方法

0引言

随着总理的大众创业、万众创新时代的到来,应用型人才的培养的需求愈加突显,社会与各企业对人才的运用知识能力和实践能力提出了新的要求,作为培养职业人才的高职高专类院校,不仅需要培养学生专业方面的理论知识,更需要着力培养较强的实践能力与动手能力,培养其成为适应社会需要的、能够在不同条件下创造性地用所学知识解决实际问题的能力。与此同时,为了实现应用型人才培养的目标,对我们教师也提出了新的要求与挑战。数学建模是大学数学课程与现实问题的桥梁,全国大学生数学建模竞赛是目前国内规模最大,影响力比较大的科技类竞赛,逐步成为在校大学生展现自己创新能力、解决实际问题能力的舞台,通过数学建模竞赛,不仅展示了学生的综合能力和创新能力,同时也提高了教师的教学能力,为高校数学教学改革提供了新的思路与方法。数学建模竞赛的试题案例涉及面广,与现实问题贴切,适合“应用型”的要求。将数学建模的思想与方法融入到高等数学课程的教学中去,是高职高专类院校教学改革的一大措施。

1教学过程融入建模思想的具体方法

数学建模是对实际问题进行抽象简化,并构造出数学模型来求解该问题。事实上高等数学与其它学科与专业领域的联系非常密切,利用数学来解决实际问题的思路与方法涉及了很多专业领域。笔者通过多年和数学建模竞赛指导与培训,积累了一定的经验,并认识到建模的本质是数学理论与实际问题相融合的结果。而因为许多的现实问题都牵涉到众多实际因素,因此在建立数学模型时,往往都需要进行适当的模型假设,简化模型来计算。尽管众多建模问题不尽相同,但其内在联系都是把问题中相关变量的关系通过数学方法来抽象出其具体形式。在教学过程融入建模思想可从如下几点着手:

1.1教材的选用应重点突出数学建模方法的应用

在高等数学教学中融入数学建模思想与方法,教材选用至关重要。目前来说高等数学相关教材达到上百种,可是能够体现数学建模思想与方法的高数教材较少,大部分高职高专类院校所选用的教材大多是借鉴或参照综合性大学的本、专科高等数学教材,使得大部分的教学内容都没有体现自己的“应用型人才”培养的特色。个人认为,教材应达到理论知识贴近生活且易于理解,所涉及专业方面知识不能过多,把渗透数学建模思想作为首要参考标准,从根源上提高学生利用数学知识来解决现实问题的兴趣,让学生初步认识到“数学原来是有用的”。

1.2以应用型例题为突破口,教学中体现建模思想

众所周知,传统的数学课堂讲授方式较为呆板,大多数的数学教师都习惯与把数学看成是一种墨守成规的工具,而往往忽视了大学数学在培养学生的创造力与创新性能力方面的主要作用,教师不注重或不擅于去搜集一些体现学生创新能力培养相关的素材与实例,使得教学与现实严重脱节,学生在课堂学习中失去主动积极性,培养出来的学生也只会考试而不会用理论联系实际来解决问题。数学在我们的生活中无处不在,众多实际问题大多都能在数学的知识点中找到相关联系,多采纳一些与教学内容结合紧密的例题。而一般选取的实例要尽量贴近教材,接近高职高专类层次学生的认知水平与他们的实际生活,培养学生初步的建模能力,比如一次函数模型,指数函数模型等,达到在数学的教学中融入数学建模思想的目的。所以除了选用适用的教材之外,教师平时应注意搜集一些注重学生创新能力培养的素材与实例,提高课堂教学的趣味性与学生学习的主动性。

1.3在相关定义、定理等内容的讲解中渗透数学建模思想

从本质上说,数学来源于现实生活,高等数学教材里的相关定义比如函数极限、导数与微分、无穷级数等都是从现实问题中抽象出来的数学模型。教师在教学过程中,可以通过对原型问题的再现,从学生所熟知的生活实例引入,使其认识到书本中的定义并不是“死”的,而是与实际生活密切联系的。在讲授相关概念的时候,可尽量结合实际提供有关于数学建模基本方法方面的丰富而直观的问题背景。例如在讲解数列极限的概念时,可引入刘徽的割圆术、几何图形、坐标系中点的动画演示等较为直观的背景材料,尽可能地使学生直观地理解定义,使其了解现实问题中的规律与数学理论知识的联系,初步学习、掌握数学建模的思想。又比如在讲解定积分的概念时,可把变力作功、曲边梯形的面积、旋转体体积等问题的求解与之相结合,通过“微元法”求解这类实际问题,从中抽象出定积分的定义,让学生认识到数学原来还有这么深厚的现实背景,相对于枯燥乏味的纯理论的填鸭式教学来说,这样更能激起学生的学习兴趣,无形中培养他们挖掘生活与理论之联系的建模能力。

1.4可结合高等数学相关知识面向学生开展专题的数学建模活动

目前越来越多的高职高专类院校也开始参与数学建模竞赛活动,与“应用型”人才的培养相互映衬。在教学过程中,教师可适当地让学生多参与,培养动手能力,使学生们能够在实践中体验数学的乐趣。改变传统的教学方式,针对所学知识开展专题类建模活动,使他们能够对实际问题中的各因素间的相互关系进行抽象并建立数学模型。例如请学生们以小组为单位,通过利用网络资源或去有关部门查询本市2000年之后的常住居民数,通过所学的数学知识,建立数学模型解决以下问题:①该市的人口年增长率;②通过你所计算出的人口增长率,预测出2017年初该市的人口总数。并以小组专题论文的形式进行探讨交流。这样的活动其实很多,比如等比数列教学中,关于银行贷款利息的计算。可请学生关注利率变化的基础上,考虑如果向银行贷款50万元15年还清的情况下,采用如下两种不同的还款方式:①等额本金法还款;②等额本息还款。利用所学知识,通过建立数学模型解决月还款额问题,并对比两种还款方式不优劣与不同。

2结束语

在数学建模竞赛的推动之下,高等数学的教学改革也有了更快速的发展,把数学建模思想融入到高等数学的教学中,不失为一种推动数学教学改革的一种的有效途径,亦可达到以赛促教之目的,与教学相辅相成,使教学改革得到长足的进展。

作者:刘君 单位:广州城建职业学院

第8篇:数学建模的应用实例范文

关键词:概率论与数理统计;数学建模;案例教学

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2017)01-0105-02

引言

利用数学基础知识抽象、提炼出数学模型的过程就称为数学建模[1]。数学建模是指针对实际生产生活中的特定对象,为了特定的一些目的,通过一定的数学知识与数学思想,对研究对象做出简化和假设,以此对实际问题进行抽象。数学模型的建立要求建立者针对实际问题,合理地应用数学符号、数学知识、图形等对实际问题进行本质并且抽象地描绘,而不是现实问题的直接翻版。

概率论是一门历史悠久的学科,产生于赌博中的问题,现在早已经发展成为了研究随机现象及其规律的一门数学学科。概率论与数理统计分成了概率以及统计两大部分,是各类高校必修的重要基础课程之一。概率论与数理统计中所涉及的学习方法和学习内容,与后期将要学习的随机过程、计量经济学、微观经济学、时间序列分析等课程息息相关,是学生学习这些后续课程的理论基础。概率论与数理统计在社会生产生活的各个领域都有着非常广泛的应用[2]。但是,不少学生感到概率统计课程的概念听起来似乎不难理解,但是一遇到实际问题就不知道该如何入手,思维难以展开,所学的分析方法与概率思想很难与自身专业联系起来。针对现在的教学现状与学生所遇到的实际困难,作为高等教育的工作者,我们能做些什么呢?将数学建模思想融入到概率统计教学中,在抽象、枯燥的概率统计教学过程中,穿插一些与学生专业相关的或者在实际生产生活中常见的问题,对其进行数学建模,同时进行分析和求解,不仅能够帮助学生更好地理解与掌握理论知识,而且也能在很大程度上提高学生的学习兴趣,并且能够帮助学生提高解决实际问题的能力。

现在的数学教育工作者已经越来越重视数学建模与案例教学,并为之采取了诸多相关的教学改革措施。例如,不少高校都越来越重视数学建模竞赛并积极参与其中,同时许多针对高校教师的教学竞技比赛也都专门设立了数学建模或案例教学的竞赛,这些都在一定程度上给予了教师一定的导向性。

概率论与数理统计作为概率论、数理统计以及计算数学等学科形成的交叉性、应用性学科,怎样做才能与数学建模的内容相结合呢?如何将数学建模的思想与方法更好地介绍给学生?如何让学生学以致用,将概率统计的内容与自身的专业特色相结合呢?概率统计中有哪些知识点可以与数学建模相结合呢?除了常见的贝叶斯公式、数学期望的概念、方差的概念、乘法公式、条件概率、区间估计、点估计等这些常见的知识点,还有没有一些其他的知识点能与数学建模融合在一起呢?除了闭卷考试以外,还能采取什么样的考核评价方式呢?这些问题值得我们思考。

一、概率论与数理统计课程中融入数学建模思想的必要性

在概率统计课程的教学中,作为教师首先必须明确教学的中心任务是引导学生从传统的确定性思维模式进入随机性思维模式,使学生掌握处理在实际生产生活中出现的随机问题的数学方法。运用概率统计思想理论和方法可以建立各种不同的数学模型。在概率论与数理统计的教学过程中,适当增加数学建模内容的教学,既符合教育改革的要求,也顺应了时展的潮流。

当然,在概率论与数理统计的教学过程中,我们应该分清主次,不能舍本逐末,应该控制好基础理论教学与应用教学之间的比例。在确保完成概率论与数理统计基础理论教学的同时进行数学建模讲授。理论是基础,应用是目的,融入是手段。没有理论知识作为基石,何来的应用创新?

二、提高教师的数学建模能力

大学数学教学中教师具有重要的作用,只有教师对课程内容有全面的深刻的理解才可以达到有效的教学。要求教师将数学建模思想和内容穿插到概率统计教学中去,首先需要解决的是教师自身的数学建模能力的问题。作为数学教师应随时关注各类建模比赛,全身心地投入到各类数学建模比赛的指导与培训工作中,在实践中丰富自身的数学建模知识,亲身体会数学建模的过程。通过在比赛中与学生的沟通与接触,了解各个不同专业学生的真实想法,弄清学生的疑惑,在指导学生比赛的同时丰富自己的教学经验。有条件的高校,可以定期举办数学建模的培训与讲座等,不断更新教师与学生的建模知识。

运用概率统计思想在实际建模中以实际问题为研究对象,利用数学期望的概念、贝叶斯公式、方差的概念、二项分布的概念、中心极限定理、参数估计、假设检验、回归分析等理论,可以建立各种不同的数学模型,从而解决不同的实际问题。例如,对生产产品的抽样检验、质量管理、风险评估、成绩评估、运动员综合水平的测评等等进行分析,都需要用到概率论与数理统计的相关理论和方法[3]。由此,不难发现数学建模内容涉及的知识面十分广泛,这无疑会对教师和教学单位提出更高的要求,如何收集和丰富教学案例的内容,成为了每所高校及每位教师所必须面对的问题。没有不断更新的案例,何来与时俱进的数学建模的教学呢?相关教学单位可以通过奖励机制比如设立教改基金项目等措施,鼓励数学模型与案例的收集建设,为广大数学教师的发展提供有力支持[2]。

三、更新教学手段、体现建模思想

在概率论与数理统计课堂教学中,可以通过案例教学来讲解数学建模,提高学生分析问题和解决问题的能力。教师可以引导学生直接从案例出发,将实际问题数学化,然后利用概率论与数理统计的知识解决实际问题,在解决具体问题的过程中灵活地引出相应的方法和理论。在案例教学的过程中,可采取灵活多样的学习方式,比如分组讨论,通过查找资料,自主建模等来体现学生的主体地位。教师总体把控,适时引导,合理掌握整体布局,避免出现冷场、跑题等现象[4]。前不久,在吉林大学召开的“第二届(2016)全国高校数学微课程教学设计竞赛”中,就专门设立了案例教学竞赛,这无疑为推动数学建模以及案例教学的发展提供了一个很好的导向。

授课老师应充分利用各种现代化信息手段,采用多媒体教学。在信息化时代,各种数学软件是必不可少的可以实现或论证建模结论的有力工具。可以考虑在概率论与数理统计课程中增加实验教学环节,讲授Mathematica,SAS,Spss等软件。有条件的高校,还应该定期对数学教师进行培训,使其掌握相关软件发展的最新方向与动态。

在设计学习评价指标时,教师可以尝试一些除闭卷考试之外的考核方法。对概率统计的基本概念、理论和计算采取闭卷考核方式,而针对综合性、应用性强的案例应采用开卷考核形式。亦可采用概率统计知识与计算机软件相结合的方式对学生进行考核[5]。同时可以考虑进行校内各专业之间的数学建模比赛等。

结束语

将数学建模思想融入概率统计教学中对于进一步推进概率统计教学改革,提升学生学习数学的兴趣,提高学生应用数学解决实际问题的能力,具有重要的促进作用。目前,在概率论与数理统计课程中融入数学建模的思想已经引起了越来越多的相关教学工作者的重视。作为数学教师应当把握融入数学建模思想的基本原则,合理分配基础理论教学与实际数学建模教学的比例。在对学生进行基础理论教学的同时将创新思想、建模思想融入到概率论与数理统计的课程教学过程中,使得概率统计课程能够更好地适应经济快速发展的潮流,更好地服务于社会。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2011.

[2]向小红.数学建模思想的概率统计学探讨[J].中国科教创新导刊,2012,(35):57-58.

[3]刘卫锋,周长芹.数学建模融入概率统计教学存在的问题与对策[J].高师理科学刊,2013,33(2):85-87.

[4]王芬,夏建业,赵梅春,刘娟.金融类高校高等数学课程融入数学建模思想初探[J].教育教学论坛,2016,1(1):156-157.

[5]刘琼荪,钟波.将数学建模思想融入工科“概率统计”教学中[J].大学数学,2006,22(2):152-154.

The Brief Discussion of the Combination of Probability Statistics Curriculum and Mathematical Modeling Thought

WANGFen,XIA Jian-ye,LIU Juan

(Department of Applied Mathematics,Guangdong University of Finance,Guangzhou 510521,China)

第9篇:数学建模的应用实例范文

【关键词】: 高中数学模型应用

在高中数学中,有很多章节适合用数学模型及解应用题的方法去处理,例如必修一中《函数模型及运用》,必修四中《分期付款中的有关计算》、《向量的应用》,必修三中的《算法案例》,《概率统计》等,高三数学选修Ⅱ中《杨辉三角》、《复数与平面向量、三角函数的联系》等 ,那么在教学中对于这些章节应如何来处理呢,对待这些章节应持什么态度,教学中如何引入这些章节,这些因素是我们广大高中数学教师要思考的内容。

一、 高中数学建模及数学应用有关内容的重要性

在以往的教学中,遇到数学模型及数学应用有关章节时我们一般都一带而过,有的教师甚至讲都不讲,但从最后高考的结果看,学生在应用题大题的得分就比较低,这其中就有很大的原因在高一高二的教学,因为我们不能等到高三发现问题再去给学生补应用题及建模的相关意识,因为数学建模与应用题的解题方法是一种数学思维方式及数学修养,实际上是一种习惯,习惯的养成不是靠一天两天就能养成及出成果的,而是要注重平时的教学培养,所有我们有必要做一个系统的安排。

我们的中学数学教学是一种“目标教学”。一方面, 我们一直想教给学生有用的数学, 但学生高中毕业后如不攻读数学专业,就觉得数学除了高考拿分外别无它用; 另一方面,我们的“类型+方法”的教学方式的确是提高了学生的应试“能力”,但是学生 一旦碰到陌生的题型或者联系实际的问题却又不会用数学的方法去解决它。大部分同学学了十二年的数学,却没有起码的数学思维,更不用说用创造性的思维自己去发现问题,解决问题了。由此看来,中学数学教与学的矛盾显得特别尖锐。

加强中学数学建模与应用的教学正是在这种教学现状下提出来的。

二、高中数学建模及数学应用有关内容的分析及教学探讨

高中数学课程标准中已明确提出数学模型与数学建模有关内容的教学要求,而且高中数学课本中也有相关的章节,例如《函数模型及运用》,教学中教师不必过分强调数学建模的模式及其步骤,着重要强调数学建模的思维方式。

(1)注重用数学模型及数学建模的思维方式去处理应用问题

我国普通高中新的数学教学大纲中也明确提出要“切实培养学生解决实际问题的能力”,要求“增强用数学的意识,能初步运用数学模型解决实际问题,逐步学会把实际问题归结为数学模型,然后运用数学方法进 行探索 、猜 测 、判 断 、证 明 、运 算 、检验,使问题得到解决”。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因为我们的数学教学不仅要使学生获得新的知识而且要提高学生的思维能力, 要培养学生自觉地运用数学知识去考虑和处理日常生活、生产中所遇到的问题,从而形成良好的思维品质,具有探索新知识、新方法的创造性思维能力。

(2)重视新课程教学理念教学,加强背景知识导入

在新课程教学过程中,对于数学概念的提出,我们要注意其发生的过程,注意从实际的问题中引出数学的概念,例如,在介绍导数中的平均变化率的时候,教材中用了气温上升这个例子,生动鲜明地阐述的变化率这个概念,同时也反映出我们在这方面的实际生活中数学将有很好的运用,所以,注重数学中背景知识的导入将起到一举两得的教学效果。

做好数学应用题教学意识,要强化背景知识的引入,使学生的成绩得到充分的提高。这一点很重要,目前的教学中,我们往往只重视数学知识的教学,而很少关注数学知识的作用,这往往影响学生学习数学知识的热情,而且在考试中也往往影响学生的考试成绩。例如,在某一年的高考题中,谈到冷轧钢的问题,数学基础并不难,但学生对冷轧钢的背景知识了解缺较少,导致该题无法完成。

但有的教师往往会说,我教数学,其它知识跟我有什么关系,这其实是一个误区,背景往往是导入相关知识点的关建,背景知识有助于学生理解知识,更有利于激发学生的学习兴趣。

例如,在教学必修一中《函数模型及运用》时,教师可以适当的给学生介绍数学在经济学、物理学等方面的作用,在本节中甚至还提到了经济学中的边际函数,教师可以查阅相关资料,了解边际函数的概念及重要作用,这样可以激发学生对数学巨大作用的理解。

在教学必修四中《分期付款中的有关计算》时,教师可以用目前大家都能理解的买房按揭贷款还款作为背景,问学生如何还贷,应如何计算,作为切入点,从而可以让学生理解数列的巨大作用。

另外,《向量的应用》,必修三中的《算法案例》,《概率统计》等,高三数学选修Ⅱ中《杨辉三角》、《复数与平面向量、三角函数的联系》等这些章节与实际联系也很紧密,在教学这些章节的时候也可以注重实际运用背景的运用。

(3)可用校本课程的方法系统地加强数学模型及数学应用有关章节的教学

对于数学模型与应用的相关章节,比较分散,可以开设校本课程从整体考虑,在教学中, 安排数学建模相关内容的校本课程教学。可以分三个阶段。

第一阶段主要培养学生对数学模型的认识及对数学思维方式的培养。

我们主要以高一学生为研究对象,在课堂教学中给学生展示数学模型,重视此类课程的教学,如《函数模型及应用》。

第二阶段主要培养学生建模能力。

主要以高二学生为研究对象,教给学生数学建模的方法,例如在曲线方程的教学中,求曲线的轨迹,我们可以让学生建立直角坐标系,根据要求写成曲线满足的数学条件,再进行化简,得到曲线的方程,解答提出的问题。

第三阶段是综合提高的阶段。

我们以高三学生为研究对象,综合对学生的数学模型意识及建模能力的培养,以高考题及统测试题的应用题为模型,充分让学生建模解模,体会数学带给学生的能力的提高和用数学解决实际问题的快乐,让学生体会数学的价值。

参考文献